cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A129775 Number of maximally clustered permutations in S_n; the maximally clustered permutations are those that avoid 3421, 4312 and 4321.

Original entry on oeis.org

1, 1, 2, 6, 21, 78, 298, 1157, 4539, 17936, 71251, 284188, 1137076, 4561093, 18333337, 73816489, 297635750, 1201551286, 4855672249, 19640147061, 79501958895, 322037615290, 1305256267511, 5293166568270, 21475362822956, 87166344495561, 353933533606927
Offset: 0

Views

Author

Brant Jones (brant(AT)math.washington.edu), May 17 2007

Keywords

Comments

Equals INVERT transform of A001700 prefaced with a "1": (1, 1, 3, 10, 35, 126, 462, ...). - Gary W. Adamson, Dec 26 2008
Row sums of A155083. - Paul Barry, Jan 19 2009
Hankel transform is n+1. - Paul Barry, Jul 31 2010
INVERT transform of A088218. - Michael Somos, Jan 01 2014
INVERT transform is A073525. - Michael Somos, Jan 09 2014

Examples

			a(5)=78 because there are 78 permutations of size 5 that avoid 3421, 4312 and 4321.
G.f. = 1 + x + 2*x^2 + 6*x^3 + 21*x^4 + 78*x^5 + 298*x^6 + 1157*x^7 + 4539*x^8 + ...
		

Crossrefs

Cf. A108600.
Cf. A001700. - Gary W. Adamson, Dec 26 2008

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ 1 + 2 x^2 / (-1 + 4 x - 2 x^2 + Sqrt[1 - 4 x]), {x, 0, n}]; (* Michael Somos, Jan 01 2014 *)
    a[n_] := 1+Sum[(m Binomial[2(n-m), n-m-1] Hypergeometric2F1[m+1, m-n+1, n-m+2, -1])/(n-m), {m, 1, n-1}]; Table[a[n], {n, 0, 26}] (* Jean-François Alcover, Dec 14 2018, after Vladimir Kruchinin *)
  • Maxima
    a(n):=if n=0 then 1 else sum(sum(k*binomial(m+k-1,m-1)*binomial(2*(n-m),n-m-k),k,1,n-m)/(n-m),m,1,n-1)+1; /* Vladimir Kruchinin, Oct 11 2011 */

Formula

G.f.: 1+(2x^2) / (-1+4x-2x^2+sqrt(1-4x)).
G.f.: 1 + x * (1 - 4*x + 2*x^2 + sqrt(1 - 4*x)) / (2 * (1 - 5*x + 4*x^2 - x^3)). - Michael Somos, Jan 01 2014
G.f.: 1+x/(1-x-x/(1-2x-x^2/(1-2x-x^2/(1-2x-x^2/(1-... (continued fraction). [From Paul Barry, Jan 19 2009]
G.f.: 1+x/(1-x-x/(1-x-x/(1-x-x^2/(1-x-x/(1-x-x^2/(1-x-x/(1-x-x^2/(1-x-x/(1-x-x^2/(1-x-x/(1-x-x^2/(1-... (continued fraction). - Paul Barry, Jul 31 2010
a(n) = sum(m=1..n-1, sum(k=1..n-m, k*binomial(m+k-1,m-1)*binomial(2*(n-m),n-m-k))/(n-m))+1, a(0)=1. - Vladimir Kruchinin, Oct 11 2011
a(n) is the upper left term in M^n, M = an infinite square production matrix with (1, 1, 2, 4, 8, 16, ... powers of 2) as the left border, as follows:
1, 1, 0, 0, 0, ...
1, 1, 1, 0, 0, ...
2, 1, 1, 1, 0, ...
4, 1, 1, 1, 1, ...
... - Gary W. Adamson, Nov 14 2011
D-finite with recurrence (n-1)*a(n) + 3*(5-3*n)*a(n-1) + 6*(4*n-9)*a(n-2) + (41-17*n)*a(n-3) + 2*(2*n-5)*a(n-4) = 0. - R. J. Mathar, Nov 15 2011
0 = a(n) * (16*a(n+1) - 74*a(n+2) + 120*a(n+3) - 66*a(n+4) + 10*a(n+5))+ a(n+1) * (-62*a(n+1) + 361*a(n+2) - 480*a(n+3) + 265*a(n+4) - 41*a(n+5)) + a(n+2) * (-342*a(n+2) + 615*a(n+3) - 335*a(n+4) + 54*a(n+5)) + a(n+3) * (-90*a(n+3) + 75*a(n+4) - 15*a(n+5)) + a(n+4) * (-3*a(n+4) + a(n+5)) if n>0. - Michael Somos, Jan 01 2014
G.f.: 1 / (1 - x / (1 - x / (1 - 2*x / (1 - x / (2 - 3*x / (1 - 2*x / (3 - 4*x / ... ))))))). - Michael Somos, Jan 09 2014
G.f.: 2/(2-x-x/sqrt(1-4*x)). - Michael Somos, Jan 09 2014
a(n) ~ 1/(r^(n-1) * (2*r - 2 + (16*r^2 - 60*r + 65)*sqrt(1-4*r))), where r = 1/3*(4 - (2/(25-3*sqrt(69)))^(1/3) - (1/2*(25-3*sqrt(69)))^(1/3)) = 0.2451223337533... is the root of the equation 5*r-4*r^2+r^3 = 1. - Vaclav Kotesovec, Jan 12 2014
G.f.: x/(2-x-C(x)) where C(x)=(1-sqrt(1-4*x))/(2*x) is the g.f. for Catalan numbers A000108. - David Callan, Dec 03 2015

Extensions

a(0)=1 prepended by Alois P. Heinz, Dec 04 2015

A129776 Number of maximally-clustered hexagon-avoiding permutations in S_n; the maximally-clustered hexagon-avoiding permutations are those that avoid 3421, 4312, 4321, 46718235, 46781235, 56718234, 56781234.

Original entry on oeis.org

1, 1, 2, 6, 21, 78, 298, 1157, 4535, 17872, 70644, 279704, 1108462, 4395045, 17431206, 69144643, 274300461, 1088215370, 4317321235, 17128527716, 67956202025, 269612504850, 1069675361622, 4243893926396, 16837490364983, 66802139457897, 265035151393777
Offset: 0

Views

Author

Brant Jones (brant(AT)math.washington.edu), May 17 2007

Keywords

Comments

If w is maximally-clustered and hexagon-avoiding, there are simple explicit formulas for all the Kazhdan-Lusztig polynomials P_{x,w}.

Examples

			a(8)=4535 because there are 4535 permutations of size 8 that avoid 3421, 4312, 4321, 46718235, 46781235, 56718234 and 56781234.
		

References

  • Jozsef Losonczy, Maximally clustered elements and Schubert varieties, Ann. Comb. 11 (2007), no. 2, 195-212.

Crossrefs

Programs

  • PARI
    lista(nt) = { my(x = 'x + 'x*O('x^nt) ); P = (3*x^6+x^5-5*x^4+7*x^3-5*x^2+x) / (-3*x^6+4*x^5+8*x^4-14*x^3+15*x^2-7*x+1); print(Vec(P));} \\ Michel Marcus, Mar 17 2013

Formula

G.f.: 1+(3x^6+x^5-5x^4+7x^3-5x^2+x) / (-3x^6+4x^5+8x^4-14x^3+15x^2-7x+1).

Extensions

More terms from Michel Marcus, Mar 17 2013
a(0)=1 prepended by Alois P. Heinz, Jan 12 2025

A129777 Number of freely-braided hexagon-avoiding permutations in S_n; the freely-braided hexagon-avoiding permutations are those that avoid 3421, 4231, 4312, 4321, 46718235, 46781235, 56718234 and 56781234.

Original entry on oeis.org

1, 1, 2, 6, 20, 71, 260, 971, 3670, 13968, 53369, 204352, 783408, 3005284, 11533014, 44267854, 169935041, 652385639, 2504613713, 9615798516, 36917689075, 141737959416, 544175811783, 2089262741393, 8021347093432, 30796530585417, 118237818141689, 453953210838465
Offset: 0

Views

Author

Brant Jones (brant(AT)math.washington.edu), May 17 2007

Keywords

Comments

If w is freely-braided and hexagon-avoiding, there are simple explicit formulas for all the Kazhdan-Lusztig polynomials P_{x,w}.

Examples

			a(8)=3670 because there are 3670 permutations of size 8 that avoid 3421, 4231, 4312, 4321, 46718235, 46781235, 56718234 and 56781234.
		

References

  • Jozsef Losonczy, Maximally clustered elements and Schubert varieties, Ann. Comb. 11 (2007), no. 2, 195-212.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{6, -9, 3, 1, -8, -1, 1}, {1, 2, 6, 20, 71, 260, 971}, 27] (* Jean-François Alcover, Feb 02 2019 *)
  • PARI
    lista(nt) = { my(x = 'x + 'x*O('x^nt) ); P = (-x^7-2*x^6+2*x^5+x^4-3*x^3+4*x^2-x) / (x^7-x^6-8*x^5+x^4+3*x^3-9*x^2+6*x-1); print(Vec(P));}  \\ Michel Marcus, Mar 17 2013

Formula

G.f.: 1+(-x^7-2x^6+2x^5+x^4-3x^3+4x^2-x) / (x^7-x^6-8x^5+x^4+3x^3-9x^2+6x-1).

Extensions

More terms from Michel Marcus, Mar 17 2013
a(0)=1 prepended by Alois P. Heinz, Jan 12 2025
Showing 1-3 of 3 results.