cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108644 Square array A(n,k) read by ascending antidiagonals: A(n,n) = n^2, if n>k: A(n,k) = n*(n-1) + k, if k>n: A(n,k) = n + (k-1)^2.

Original entry on oeis.org

1, 3, 2, 7, 4, 5, 13, 8, 6, 10, 21, 14, 9, 11, 17, 31, 22, 15, 12, 18, 26, 43, 32, 23, 16, 19, 27, 37, 57, 44, 33, 24, 20, 28, 38, 50, 73, 58, 45, 34, 25, 29, 39, 51, 65, 91, 74, 59, 46, 35, 30, 40, 52, 66, 82, 111, 92, 75, 60, 47, 36, 41, 53, 67, 83, 101
Offset: 1

Views

Author

Pierre CAMI, Jun 27 2005

Keywords

Comments

The table gives all positive integers exactly once.

Examples

			Array begins:
   1  2  5 10 17 26 37 ...
   3  4  6 11 18 27 38 ...
   7  8  9 12 19 28 39 ...
  13 14 15 16 20 29 40 ...
  21 22 23 24 25 30 41 ...
  31 32 33 34 35 36 42 ...
  43 44 45 46 47 48 49 ...
  ...
Antidiagonal triangle begins as:
   1;
   3,  2;
   7,  4,  5;
  13,  8,  6, 10;
  21, 14,  9, 11, 17;
  31, 22, 15, 12, 18, 26;
  43, 32, 23, 16, 19, 27, 37;
  ...
		

Crossrefs

Cf. A002522 (1st row), A002061 (1st column), A000290 (diagonal).

Programs

  • Magma
    A:= func< n,k | k lt n select k+n*(n-1) else k eq n select n^2 else n+(k-1)^2 >;
    A108644:= func< n,k | A(n-k+1,k) >;
    [A108644(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Oct 18 2023
    
  • Mathematica
    A[n_, k_]:= If[kA108644[n_, k_]:= A[n-k+1,k];
    Table[A108644[n,k], {n,12}, {k,n}]//Flatten (* G. C. Greubel, Oct 18 2023 *)
  • PARI
    A(i,j)=if (i==j, i^2, if (i>j, i*(i-1)+j, (j-1)^2+i));
    matrix(7,7,n,k,A(n,k)) \\ Michel Marcus, Dec 30 2020
    
  • SageMath
    def A(n,k):
        if kA108644(n,k): return A(n-k+1,k)
    flatten([[A108644(n,k) for k in range(1,n+1)] for n in range(1,13)]) # G. C. Greubel, Oct 18 2023

Formula

From G. C. Greubel, Oct 18 2023: (Start)
T(n, k) = A(n-k+1, k) (antidiagonal triangle).
T(n, n) = A002522(n-1).
T(2*n, n) = A005563(n).
T(2*n-1, n) = A000290(n).
T(2*n-2, n) = A002378(n-1), n >= 2.
T(3*n, n) = A033954(n).
Sum_{k=1..n} T(n, k) = A274248(n). (End)
Let M be the upper left n X n submatrix of this array, then abs(det(M)) = A098557(n). - Thomas Scheuerle, Nov 11 2023