A108674 a(n) = (n+1)^2 * (n+2)^2 * (2*n+3) / 12.
1, 15, 84, 300, 825, 1911, 3920, 7344, 12825, 21175, 33396, 50700, 74529, 106575, 148800, 203456, 273105, 360639, 469300, 602700, 764841, 960135, 1193424, 1470000, 1795625, 2176551, 2619540, 3131884, 3721425, 4396575, 5166336, 6040320, 7028769, 8142575
Offset: 0
References
- S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 231, # 33).
Links
- Muniru A Asiru, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
Programs
-
GAP
List([0..40],k->(k+1)^2*(k+2)^2*(2*k+3)/12); # Muniru A Asiru, Feb 18 2019
-
Maple
A108674 :=n->(n+1)^2*(n+2)^2*(2*n+3)/12; seq(A108674(n),n=0..35);
-
Mathematica
Table[(n^2+4*n^3+5*n^4+2*n^5)/12, {n, 40}] (* Enrique Pérez Herrero, Feb 27 2013 *) LinearRecurrence[{6,-15,20,-15,6,-1},{1,15,84,300,825,1911},40] (* Harvey P. Dale, Apr 04 2024 *)
-
PARI
a(n)=(n+1)^2*(n+2)^2*(2*n+3)/12 \\ Charles R Greathouse IV, Feb 27 2013
Formula
G.f.: (1+z)*(1+8*z+z^2)/(1-z)^6.
a(n) = Sum_{j=1..n+1} j^2 Sum_{i=1..n+1} i. - Alexander Adamchuk, Jun 25 2006
E.g.f.: exp(x)*(12 + 168*x + 330*x^2 + 184*x^3 + 35*x^4 + 2*x^5)/12. - Stefano Spezia, Mar 02 2022
From Amiram Eldar, May 29 2022: (Start)
Sum_{n>=0} 1/a(n) 192*log(2) - 132.
Sum_{n>=0} (-1)^n/a(n) = 2*Pi^2 - 48*Pi + 132. (End)
Comments