cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108678 a(n) = (n+1)^2*(n+2)*(2*n+3)/6.

Original entry on oeis.org

1, 10, 42, 120, 275, 546, 980, 1632, 2565, 3850, 5566, 7800, 10647, 14210, 18600, 23936, 30345, 37962, 46930, 57400, 69531, 83490, 99452, 117600, 138125, 161226, 187110, 215992, 248095, 283650, 322896, 366080, 413457, 465290, 521850, 583416, 650275, 722722
Offset: 0

Views

Author

Emeric Deutsch, Jun 17 2005

Keywords

Comments

Kekulé numbers for certain benzenoids.

References

  • S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 232, # 44).

Crossrefs

Programs

  • Magma
    [(n+1)^2*(n+2)*(2*n+3)/6: n in [0..60]]; // G. C. Greubel, Apr 09 2023
    
  • Maple
    a:=n->(n+1)^2*(n+2)*(2*n+3)/6: seq(a(n),n=0..42);
    a:=n->sum(n*j^2, j=1..n): seq(a(n), n=1..36); # Zerinvary Lajos, Apr 29 2007
  • Mathematica
    Table[(n+1)^2*(n+2)(2n+3)/6,{n,0,100}] (* Vladimir Joseph Stephan Orlovsky, Jun 03 2011 *)
  • SageMath
    [(n+1)^2*(n+2)*(2*n+3)/6 for n in range(61)] # G. C. Greubel, Apr 09 2023

Formula

G.f.: (1 + 5*x + 2*x^2)/(1-x)^5.
a(n) = A098077(n+1)/2. - Alexander Adamchuk, Apr 12 2006
From Amiram Eldar, May 31 2022: (Start)
Sum_{n>=0} 1/a(n) = Pi^2 + 48*log(2) - 42.
Sum_{n>=0} (-1)^n/a(n) = Pi^2/2 - 12*Pi - 12*log(2) + 42. (End)
From G. C. Greubel, Apr 09 2023: (Start)
a(n) = (1/3)*binomial(n+2, 2)*binomial(2*n+3, 2).
a(n) = (1/3)*A000217(n+1)*A014105(n+1)
a(n) = (1/8)*A100431(n).
E.g.f.: (1/6)*(6 + 54*x + 69*x^2 + 23*x^3 + 2*x^4)*exp(x). (End)
a(n) = (n+1)*A000330(n+1). - Olivier Gérard, Jan 13 2024