A213962
T(n,k)=Number of n X n 0..k matrices with row and column i=1..n having sum <= i*k.
Original entry on oeis.org
2, 3, 10, 4, 42, 138, 5, 120, 3186, 5314, 6, 275, 32060, 1299735, 575122, 7, 546, 199735, 74323976, 2860343784, 176041978, 8, 980, 909900, 1839121115, 1494988224948, 34107691901433, 153143689594, 9, 1632, 3323712, 26346319032, 214090209950060
Offset: 1
Some solutions for n=4 k=4
..0..1..1..0....4..0..0..0....1..3..0..0....3..0..1..0....4..0..0..0
..2..4..1..1....0..4..4..0....0..4..2..1....1..2..0..3....0..2..2..3
..0..1..2..4....0..3..4..2....0..1..0..1....0..3..1..2....0..0..1..2
..0..0..1..3....0..0..1..1....1..0..4..0....0..2..1..0....0..0..3..0
A098077
a(n) = n^2*(n+1)*(2*n+1)/3.
Original entry on oeis.org
2, 20, 84, 240, 550, 1092, 1960, 3264, 5130, 7700, 11132, 15600, 21294, 28420, 37200, 47872, 60690, 75924, 93860, 114800, 139062, 166980, 198904, 235200, 276250, 322452, 374220, 431984, 496190, 567300, 645792, 732160, 826914, 930580, 1043700
Offset: 1
a(2) = (1^2 + 1^2) + (1^2 + 2^2) + (2^2 + 1^2) + (2^2 + 2^2) = 2 + 5 + 5 + 8 = 20.
-
[n^2*(n+1)*(2*n+1)/3: n in [1..40]]; // G. C. Greubel, Apr 09 2023
-
Table[ Sum[i^2 + j^2, {i, n}, {j, n}], {n, 35}]
LinearRecurrence[{5, -10, 10, -5, 1}, {2, 20, 84, 240, 550}, 40] (* Vincenzo Librandi, Apr 16 2018 *)
-
a(n)=n^2*(n+1)*(2*n+1)/3 \\ Charles R Greathouse IV, Oct 07 2015
-
[n^2*(n+1)*(2*n+1)/3 for n in range(1,41)] # G. C. Greubel, Apr 09 2023
Original entry on oeis.org
8, 80, 336, 960, 2200, 4368, 7840, 13056, 20520, 30800, 44528, 62400, 85176, 113680, 148800, 191488, 242760, 303696, 375440, 459200, 556248, 667920, 795616, 940800, 1105000, 1289808, 1496880, 1727936, 1984760, 2269200, 2583168, 2928640, 3307656, 3722320
Offset: 0
A207361
Displacement under constant discrete unit surge.
Original entry on oeis.org
0, 1, 11, 53, 173, 448, 994, 1974, 3606, 6171, 10021, 15587, 23387, 34034, 48244, 66844, 90780, 121125, 159087, 206017, 263417, 332948, 416438, 515890, 633490, 771615, 932841, 1119951, 1335943, 1584038, 1867688
Offset: 0
s(4) = s(3) + v(4)*4 = 53 + 30*4 = 53 + 120 = 173;
s(5) = s(4) + v(5)*5 = 173 + 55*5 = 173 + 275 = 448;
s(6) = s(5) + v(6)*6 = 448 + 91*6 = 448 + 546 = 994;
s(7) = s(6) + v(7)*7 = 994 + 140*7 = 994 + 980 = 1974.
-
a:=n->sum(sum(i^2*j,j=i..n),i=0..n): seq(a(n),n=0..30); # Robert FERREOL, May 24 2022
-
a[0] = 0; a[n_] := a[n] = a[n-1] + n^2*(n+1)*(2*n+1)/6; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Oct 22 2015 *)
-
A207361(n) := block(
n*(1+n)*(2+n)*(1+11*n+8*n^2)/120
)$ /* R. J. Mathar, Mar 08 2012 */
Showing 1-4 of 4 results.
Comments