cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A213962 T(n,k)=Number of n X n 0..k matrices with row and column i=1..n having sum <= i*k.

Original entry on oeis.org

2, 3, 10, 4, 42, 138, 5, 120, 3186, 5314, 6, 275, 32060, 1299735, 575122, 7, 546, 199735, 74323976, 2860343784, 176041978, 8, 980, 909900, 1839121115, 1494988224948, 34107691901433, 153143689594, 9, 1632, 3323712, 26346319032, 214090209950060
Offset: 1

Views

Author

R. H. Hardin Jun 28 2012

Keywords

Comments

Table starts
......2..........3.............4...............5.................6
.....10.........42...........120.............275...............546
....138.......3186.........32060..........199735............909900
...5314....1299735......74323976......1839121115.......26346319032
.575122.2860343784.1494988224948.214090209950060.13186531254708756

Examples

			Some solutions for n=4 k=4
..0..1..1..0....4..0..0..0....1..3..0..0....3..0..1..0....4..0..0..0
..2..4..1..1....0..4..4..0....0..4..2..1....1..2..0..3....0..2..2..3
..0..1..2..4....0..3..4..2....0..1..0..1....0..3..1..2....0..0..1..2
..0..0..1..3....0..0..1..1....1..0..4..0....0..2..1..0....0..0..3..0
		

Crossrefs

Row 2 is A108678

Formula

Empirical: rows n=1,2,3,4 are polynomials of degree 1,4,9,16

A098077 a(n) = n^2*(n+1)*(2*n+1)/3.

Original entry on oeis.org

2, 20, 84, 240, 550, 1092, 1960, 3264, 5130, 7700, 11132, 15600, 21294, 28420, 37200, 47872, 60690, 75924, 93860, 114800, 139062, 166980, 198904, 235200, 276250, 322452, 374220, 431984, 496190, 567300, 645792, 732160, 826914, 930580, 1043700
Offset: 1

Views

Author

Alexander Adamchuk, Oct 24 2004

Keywords

Comments

Sum of all matrix elements M(i,j) = i^2 + j^2 (i,j = 1,...,n).
From Torlach Rush, Jan 05 2020: (Start)
a(n) = n * A006331(n).
tr(M(n)) = A006331(n).
The sum of the antidiagonal of M(n) equals tr(M(n)).
M(n) = M(n)' (Symmetric).
M(1,) = M(,1) = A002522(n), n > 0.
M(2,) = M(,2) = A087475(n), n > 0.
M(3,) = M(,3) = A189834(n), n > 0.
M(4,) = M(,4) = A241751(n), n > 0.
(End)
Consider the partitions of 2n into two parts (p,q) where p <= q. Then a(n) is the total volume of the family of rectangular prisms with dimensions p, p and p+q. - Wesley Ivan Hurt, Apr 15 2018

Examples

			a(2) = (1^2 + 1^2) + (1^2 + 2^2) + (2^2 + 1^2) + (2^2 + 2^2) = 2 + 5 + 5 + 8 = 20.
		

Crossrefs

Programs

  • Magma
    [n^2*(n+1)*(2*n+1)/3: n in [1..40]]; // G. C. Greubel, Apr 09 2023
    
  • Mathematica
    Table[ Sum[i^2 + j^2, {i, n}, {j, n}], {n, 35}]
    LinearRecurrence[{5, -10, 10, -5, 1}, {2, 20, 84, 240, 550}, 40] (* Vincenzo Librandi, Apr 16 2018 *)
  • PARI
    a(n)=n^2*(n+1)*(2*n+1)/3 \\ Charles R Greathouse IV, Oct 07 2015
    
  • SageMath
    [n^2*(n+1)*(2*n+1)/3 for n in range(1,41)] # G. C. Greubel, Apr 09 2023

Formula

a(n) = Sum_{j=1..n} Sum_{i=1..n} (i^2 + j^2).
G.f.: 2*x*(1 + 5*x + 2*x^2)/(1-x)^5. - Colin Barker, May 04 2012
E.g.f.: (1/3)*exp(x)*x*(6 + 24*x + 15*x^2 + 2*x^3) . - Stefano Spezia, Jan 06 2020
a(n) = a(n-1) + (8*n^3 - 3*n^2 + n)/3. - Torlach Rush, Jan 07 2020
From Amiram Eldar, May 31 2022: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/2 + 24*log(2) - 21.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/4 - 6*Pi - 6*log(2) + 21. (End)
From G. C. Greubel, Apr 09 2023: (Start)
a(n) = (1/4)*A100431(n-1).
a(n) = 2*A108678(n-1). (End)

Extensions

More terms from Robert G. Wilson v, Nov 01 2004
New definition from Ralf Stephan, Dec 01 2004

A100431 Bisection of A002417.

Original entry on oeis.org

8, 80, 336, 960, 2200, 4368, 7840, 13056, 20520, 30800, 44528, 62400, 85176, 113680, 148800, 191488, 242760, 303696, 375440, 459200, 556248, 667920, 795616, 940800, 1105000, 1289808, 1496880, 1727936, 1984760, 2269200, 2583168, 2928640, 3307656, 3722320
Offset: 0

Views

Author

N. J. A. Sloane, Nov 20 2004

Keywords

Crossrefs

Programs

Formula

a(n) = (4/3)*(2*n^4 + 11*n^3 + 22*n^2 + 19*n + 6). - Ralf Stephan, May 15 2007
G.f.: 8*(1 + 5*x + 2*x^2)/(1 - x)^5. - Ilya Gutkovskiy, Feb 24 2017
From G. C. Greubel, Apr 09 2023: (Start)
a(n) = (8/3)*binomial(n+2, 2)*binomial(2*n+3, 2).
a(n) = (8/3)*A000217(n+1)*A014105(n+1).
a(n) = 8*A108678(n).
a(n) = 4*A098077(n+1).
E.g.f.: (4/3)*(6 + 54*x + 69*x^2 + 23*x^3 + 2*x^4)*exp(x). (End)

Extensions

More terms from Hugo Pfoertner, Nov 26 2004

A207361 Displacement under constant discrete unit surge.

Original entry on oeis.org

0, 1, 11, 53, 173, 448, 994, 1974, 3606, 6171, 10021, 15587, 23387, 34034, 48244, 66844, 90780, 121125, 159087, 206017, 263417, 332948, 416438, 515890, 633490, 771615, 932841, 1119951, 1335943, 1584038, 1867688
Offset: 0

Views

Author

Jonathan Vos Post, Feb 18 2012

Keywords

Comments

Assume discrete times 0, 1, 2, 3, ...
Assume constant discrete unit surge (= jerk = rate of change of acceleration) starting surge(0) = 0.
Also assume acceleration(0) = velocity(0) = displacement(0) = 0.
So at t = 0, 1, 2, 3, 4, ... the acceleration = 0, 1, 2, 3, 4, ...
Then the velocity v(t) = v(t-1) + a(t)*t.
So the displacement = s(t) = s(t-1) + v(t)*t.
v(0,1,2,3,4,...) = 0, 1, 5, 14, 30, 55, 91, 140, ... = A000330(n).
The subsequence of primes is finite with three terms 11, 53, and 173.

Examples

			s(4) = s(3) + v(4)*4 =  53 +  30*4 =  53 + 120 =  173;
s(5) = s(4) + v(5)*5 = 173 +  55*5 = 173 + 275 =  448;
s(6) = s(5) + v(6)*6 = 448 +  91*6 = 448 + 546 =  994;
s(7) = s(6) + v(7)*7 = 994 + 140*7 = 994 + 980 = 1974.
		

Crossrefs

Programs

  • Maple
    a:=n->sum(sum(i^2*j,j=i..n),i=0..n): seq(a(n),n=0..30); # Robert FERREOL, May 24 2022
  • Mathematica
    a[0] = 0; a[n_] := a[n] = a[n-1] + n^2*(n+1)*(2*n+1)/6; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Oct 22 2015 *)
  • Maxima
    A207361(n) := block(
            n*(1+n)*(2+n)*(1+11*n+8*n^2)/120
    )$ /* R. J. Mathar, Mar 08 2012 */

Formula

a(0) = 0; for n>0, a(n) = a(n-1) + n*A000330(n) = a(n-1) + n*(0^2 + 1^2 + 2^2 + ... + n^2) = a(n-1) + n^2*(n+1)*(2*n+1)/6 = n*(1+n)*(2+n)*(1 + 11*n + 8*n^2)/120 = (2*n + 25*n^2 + 50*n^3 + 35*n^4 + 8*n^5)/120.
G.f.: x*(2*x^2+5*x+1) / (x-1)^6. - Colin Barker, May 06 2013
a(n) = Sum_{i=0..n-1} A108678(i). - J. M. Bergot, May 02 2018
a(n) = Sum_{0<=i<=j<=n} i^2*j. - Robert FERREOL, May 24 2022
Showing 1-4 of 4 results.