cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108739 Mills' constant A generates a sequence of primes via b(n)= floor(A^3^n). This sequence is a(n) = b(n+1)-b(n)^3.

Original entry on oeis.org

3, 30, 6, 80, 12, 450, 894, 3636, 70756, 97220, 66768, 300840, 1623568, 8436308
Offset: 1

Views

Author

Chris K. Caldwell, Jun 22 2005

Keywords

Comments

This allows larger terms of A051254 (which triple in digits each entry) to be given. Like A051254, currently requires Riemann Hypothesis to show sequence continues.
Currently a(11)=66768 generates only a probable prime number. - Arkadiusz Wesolowski, May 28 2011
Likewise a(12) and a(13) generate only a probable prime numbers, as well as being conditional on a(11) and a(12) being proved primes. Minimality of a(12)-a(13) is exhaustively tested. - Serge Batalov, Aug 06 2013
a(14) = 8436308 is found by Ryan Propper and Serge Batalov, Apr 29 2024, but a few remaining gaps below this value were being double-checked. The double-check is now complete (see GitHub link). - Ryan Propper and Serge Batalov, May 24 2024.

Examples

			The Mills' primes (given in A051254) are 2, 2^3+3 = 11, (2^3+3)^3+30 = 11^3+30 = 1361, ((2^3+3)^3+30)^3+6 = 1361^3+6 = 2521008887, etc. The terms added at each step yield this sequence. They are the least positive integers which added to the cube of the preceding prime yield again a prime, cf. formula. - _M. F. Hasler_, Jul 22 2013
		

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 8.

Crossrefs

Programs

  • Mathematica
    B[1] = 2; B[n_] := B[n] = NextPrime[B[n - 1]^3]; Table[B[n + 1] - B[n]^3, {n, 7}] (* Robert Price, Jun 09 2019 *)
  • PARI
    p=2; until(, np=nextprime(p^3); print1(np-p^3, ", "); p=np) \\ Jeppe Stig Nielsen, Apr 22 2020

Formula

b(1) = 2; b(n+1) = nextprime(b(n)^3); a(n) = b(n+1)-b(n)^3;

Extensions

a(9)-a(11) from Caldwell and Cheng, Aug 29 2005
Corrected by T. D. Noe, Sep 24 2008
a(12) (which generates a PRP) from Serge Batalov, Jul 19 2013
a(13) (which generates a PRP) from Serge Batalov, Aug 06 2013
a(14) (which generates a PRP) from Ryan Propper and Serge Batalov, May 24 2024