A108954 a(n) = pi(2*n) - pi(n). Number of primes in the interval (n,2n].
1, 1, 1, 2, 1, 2, 2, 2, 3, 4, 3, 4, 3, 3, 4, 5, 4, 4, 4, 4, 5, 6, 5, 6, 6, 6, 7, 7, 6, 7, 7, 7, 7, 8, 8, 9, 9, 9, 9, 10, 9, 10, 9, 9, 10, 10, 9, 9, 10, 10, 11, 12, 11, 12, 13, 13, 14, 14, 13, 13, 12, 12, 12, 13, 13, 14, 13, 13, 14, 15, 14, 14, 13, 13, 14, 15, 15, 15, 15, 15, 15, 16, 15, 16
Offset: 1
References
- F. Irschebeck, Einladung zur Zahlentheorie, BI Wissenschaftsverlag 1992, p. 40.
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 181-182.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- Tsutomu Hashimoto, On a certain relation between Legendre's conjecture and Bertrand's postulate, arXiv:0807.3690 [math.GM], 2008.
Crossrefs
Programs
-
Maple
A108954 := proc(n) numtheory[pi](2*n)-numtheory[pi](n) ; end proc: # R. J. Mathar, Nov 03 2017
-
Mathematica
Table[Length[Select[Transpose[FactorInteger[Binomial[2 n, n]]][[1]], # > n &]], {n, 100}] (* T. D. Noe, Aug 18 2011 *) f[n_] := Length@ Select[ Range[n + 1, 2n], PrimeQ]; Array[f, 100] (* Robert G. Wilson v, Mar 20 2012 *) Table[PrimePi[2n]-PrimePi[n],{n,90}] (* Harvey P. Dale, Mar 11 2013 *)
-
PARI
g(n) = for(x=1,n,y=primepi(2*x)-primepi(x);print1(y","))
-
Python
from sympy import primepi def A108954(n): return primepi(n<<1)-primepi(n) # Chai Wah Wu, Aug 19 2024
Formula
For n > 1, a(n) = A060715(n). - David Wasserman, Nov 04 2005
Conjecture: G.f.: Sum_{i>0} Sum_{j>=i|i+j is prime} x^j. - Benedict W. J. Irwin, Mar 31 2017
From Wesley Ivan Hurt, Sep 20 2021: (Start)
a(n) = Sum_{k=1..n} A010051(2*n-k+1).
Comments