A109046 a(n) = lcm(n, 5).
0, 5, 10, 15, 20, 5, 30, 35, 40, 45, 10, 55, 60, 65, 70, 15, 80, 85, 90, 95, 20, 105, 110, 115, 120, 25, 130, 135, 140, 145, 30, 155, 160, 165, 170, 35, 180, 185, 190, 195, 40, 205, 210, 215, 220, 45, 230, 235, 240, 245, 50, 255, 260, 265, 270, 55, 280, 285, 290
Offset: 0
Links
- Amiram Eldar, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,2,0,0,0,0,-1).
- Index entries for sequences related to lcm's.
Programs
-
Magma
[Lcm(n,5): n in [0..100]]; // Vincenzo Librandi, Apr 18 2011
-
Mathematica
a[n_] := LCM[n, 5]; Array[a, 60, 0] (* Amiram Eldar, Nov 26 2022 *) LinearRecurrence[{0,0,0,0,2,0,0,0,0,-1},{0,5,10,15,20,5,30,35,40,45},60] (* Harvey P. Dale, Oct 08 2023 *)
-
Sage
[lcm(n,5)for n in range(0, 59)] # Zerinvary Lajos, Jun 07 2009
Formula
G.f.: 5*x*(x^4+x^3+3*x^2+x+1)*(x^4+x^3-x^2+x+1) / ( (x-1)^2*(x^4+x^3+x^2+x+1)^2 ). - R. J. Mathar, Apr 18 2011
Sum_{k=1..n} a(k) ~ (21/10) * n^2. - Amiram Eldar, Nov 26 2022
Sum_{n>=1} (-1)^(n+1)/a(n) = 9*log(2)/25. - Amiram Eldar, Sep 08 2023