cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A109046 a(n) = lcm(n, 5).

Original entry on oeis.org

0, 5, 10, 15, 20, 5, 30, 35, 40, 45, 10, 55, 60, 65, 70, 15, 80, 85, 90, 95, 20, 105, 110, 115, 120, 25, 130, 135, 140, 145, 30, 155, 160, 165, 170, 35, 180, 185, 190, 195, 40, 205, 210, 215, 220, 45, 230, 235, 240, 245, 50, 255, 260, 265, 270, 55, 280, 285, 290
Offset: 0

Views

Author

Mitch Harris, Jun 18 2005

Keywords

Crossrefs

Programs

  • Magma
    [Lcm(n,5): n in [0..100]]; // Vincenzo Librandi, Apr 18 2011
  • Mathematica
    a[n_] := LCM[n, 5]; Array[a, 60, 0] (* Amiram Eldar, Nov 26 2022 *)
    LinearRecurrence[{0,0,0,0,2,0,0,0,0,-1},{0,5,10,15,20,5,30,35,40,45},60] (* Harvey P. Dale, Oct 08 2023 *)
  • Sage
    [lcm(n,5)for n in range(0, 59)] # Zerinvary Lajos, Jun 07 2009
    

Formula

a(n) = n*5/gcd(n, 5) = 5*n/A109009(n) = 5*A060791(n).
G.f.: 5*x*(x^4+x^3+3*x^2+x+1)*(x^4+x^3-x^2+x+1) / ( (x-1)^2*(x^4+x^3+x^2+x+1)^2 ). - R. J. Mathar, Apr 18 2011
Sum_{k=1..n} a(k) ~ (21/10) * n^2. - Amiram Eldar, Nov 26 2022
Sum_{n>=1} (-1)^(n+1)/a(n) = 9*log(2)/25. - Amiram Eldar, Sep 08 2023