cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A060791 a(n) = n / gcd(n,5).

Original entry on oeis.org

1, 2, 3, 4, 1, 6, 7, 8, 9, 2, 11, 12, 13, 14, 3, 16, 17, 18, 19, 4, 21, 22, 23, 24, 5, 26, 27, 28, 29, 6, 31, 32, 33, 34, 7, 36, 37, 38, 39, 8, 41, 42, 43, 44, 9, 46, 47, 48, 49, 10, 51, 52, 53, 54, 11, 56, 57, 58, 59, 12, 61, 62, 63, 64, 13, 66, 67, 68, 69
Offset: 1

Views

Author

Len Smiley, Apr 26 2001

Keywords

Comments

As well as being a multiplicative sequence, a(n) is also strong divisibility sequence, that is, gcd(a(n),a(m)) = a(gcd(n,m)) for n, m >= 1. In particular, a(n) is a divisibility sequence: if n divides m then a(n) divides a(m). Peter Bala, Feb 20 2019

Crossrefs

Cf. Sequences given by the formula n/gcd(n,k) = numerator(n/(n + k)): A026741 (k = 2), A051176 (k = 3), A060819 (k = 4), A060789 (k = 6), A106608 thru A106612 (k = 7 thru 11), A051724 (k = 12), A106614 thru A106621 (k = 13 thru 20).
Cf. A109046.

Programs

Formula

G.f.: x*(1 + 2*x + 3*x^2 + 4*x^3 + x^4 + 4*x^5 + 3*x^6 + 2*x^7 + x^8)/(1 - x^5)^2.
a(n) = n/5 if 5|n, otherwise a(n) = n.
From R. J. Mathar, Apr 18 2011: (Start)
a(n) = A109046(n)/5.
Dirichlet g.f.: zeta(s-1)*(1-4/5^s). (End)
G.f.: x*(x^4 + x^3 - x^2 + x + 1)*(x^4 + x^3 + 3*x^2 + x + 1)/((x - 1)^2*(x^4 + x^3 + x^2 + x + 1)^2). - R. J. Mathar, Oct 31 2015
From Peter Bala, Feb 20 2019: (Start)
a(n) = numerator(n/(n + 5)).
If gcd(n, m) = 1 then a(a(n)*a(m)) = a(a(n)) * a(a(m)), a(a(a(n))*a(a(m))) = a(a(a(n))) * a(a(a(m))) and so on.
G.f.: x/(1 - x)^2 - 4*x^5/(1 - x^5)^2. (End)
Sum_{k=1..n} a(k) ~ (21/50) * n^2. - Amiram Eldar, Nov 25 2022
Sum_{n>=1} (-1)^(n+1)/a(n) = 9*log(2)/5. - Amiram Eldar, Sep 08 2023

Extensions

Extended (using terms from b-file) by Michel Marcus, Feb 08 2014

A109042 Square array read by antidiagonals: A(n, k) = lcm(n, k) for n >= 0, k >= 0.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 3, 2, 3, 0, 0, 4, 6, 6, 4, 0, 0, 5, 4, 3, 4, 5, 0, 0, 6, 10, 12, 12, 10, 6, 0, 0, 7, 6, 15, 4, 15, 6, 7, 0, 0, 8, 14, 6, 20, 20, 6, 14, 8, 0, 0, 9, 8, 21, 12, 5, 12, 21, 8, 9, 0, 0, 10, 18, 24, 28, 30, 30, 28, 24, 18, 10, 0, 0, 11, 10, 9, 8, 35, 6, 35, 8, 9, 10, 11, 0
Offset: 0

Views

Author

Mitch Harris, Jun 18 2005

Keywords

Examples

			Seen as an array:
  [0] 0, 0,  0,  0,  0,  0,  0,  0,  0,  0, ...
  [1] 0, 1,  2,  3,  4,  5,  6,  7,  8,  9, ...
  [2] 0, 2,  2,  6,  4, 10,  6, 14,  8, 18, ...
  [3] 0, 3,  6,  3, 12, 15,  6, 21, 24,  9, ...
  [4] 0, 4,  4, 12,  4, 20, 12, 28,  8, 36, ...
  [5] 0, 5, 10, 15, 20,  5, 30, 35, 40, 45, ...
  [6] 0, 6,  6,  6, 12, 30,  6, 42, 24, 18, ...
  [7] 0, 7, 14, 21, 28, 35, 42,  7, 56, 63, ...
  [8] 0, 8,  8, 24,  8, 40, 24, 56,  8, 72, ...
  [9] 0, 9, 18,  9, 36, 45, 18, 63, 72,  9, ...
.
Seen as a triangle T(n, k) = lcm(n - k, k).
  [0] 0;
  [1] 0, 0;
  [2] 0, 1,  0;
  [3] 0, 2,  2,  0;
  [4] 0, 3,  2,  3,  0;
  [5] 0, 4,  6,  6,  4,  0;
  [6] 0, 5,  4,  3,  4,  5, 0;
  [7] 0, 6, 10, 12, 12, 10, 6,  0;
  [8] 0, 7,  6, 15,  4, 15, 6,  7, 0;
  [9] 0, 8, 14,  6, 20, 20, 6, 14, 8, 0;
		

Crossrefs

Rows A000027, A109043, A109044, A109045, A109046, A109047, A109048, A109049, A109050, A109051, A109052, A109053, A006580 (row sums of triangle), A001477 (main diagonal, central terms).
Variants: A003990 is (1, 1) based, A051173 (T(n,k) = lcm(n,k)).

Programs

  • Maple
    T := (n, k) -> ilcm(n - k, k):
    for n from 0 to 9 do seq(T(n, k), k = 0..n) od;  # Peter Luschny, Mar 24 2025

Formula

lcm(n, k) = n*k / gcd(n, k) for (n, k) != (0, 0).

A283442 a(n) = lcm(n,5) / gcd(n,5).

Original entry on oeis.org

0, 5, 10, 15, 20, 1, 30, 35, 40, 45, 2, 55, 60, 65, 70, 3, 80, 85, 90, 95, 4, 105, 110, 115, 120, 5, 130, 135, 140, 145, 6, 155, 160, 165, 170, 7, 180, 185, 190, 195, 8, 205, 210, 215, 220, 9, 230, 235, 240, 245, 10, 255, 260, 265, 270, 11, 280, 285, 290
Offset: 0

Views

Author

Colin Barker, Mar 07 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[LCM[n, 5] / GCD[n, 5], {n,0,58}] (* Indranil Ghosh, Mar 08 2017 *)
    LinearRecurrence[{0,0,0,0,2,0,0,0,0,-1},{0,5,10,15,20,1,30,35,40,45},60] (* Harvey P. Dale, Aug 11 2019 *)
  • PARI
    concat(0, Vec(x*(5 + 10*x + 15*x^2 + 20*x^3 + x^4 + 20*x^5 + 15*x^6 + 10*x^7 + 5*x^8) / ((1 - x)^2*(1 + x + x^2 + x^3 + x^4)^2) + O(x^100)))
    
  • PARI
    {for (n=0, 58, print1((lcm(n, 5) / gcd(n, 5)),", "))}; \\ Indranil Ghosh, Mar 08 2017

Formula

G.f.: x*(5 + 10*x + 15*x^2 + 20*x^3 + x^4 + 20*x^5 + 15*x^6 + 10*x^7 + 5*x^8) / ((1 - x)^2*(1 + x + x^2 + x^3 + x^4)^2).
a(n) = A109046(n) / A109009(n).
a(n) = 2*a(n-5) - a(n-10) for n>9.
Sum_{k=1..n} a(k) ~ (101/50)*n^2. - Amiram Eldar, Oct 07 2023
Showing 1-3 of 3 results.