cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A109043 a(n) = lcm(n,2).

Original entry on oeis.org

0, 2, 2, 6, 4, 10, 6, 14, 8, 18, 10, 22, 12, 26, 14, 30, 16, 34, 18, 38, 20, 42, 22, 46, 24, 50, 26, 54, 28, 58, 30, 62, 32, 66, 34, 70, 36, 74, 38, 78, 40, 82, 42, 86, 44, 90, 46, 94, 48, 98, 50, 102, 52, 106, 54, 110, 56, 114, 58, 118, 60, 122, 62, 126, 64, 130, 66, 134
Offset: 0

Views

Author

Mitch Harris, Jun 18 2005

Keywords

Comments

Exponent of the dihedral group D(2n) = . - Arkadiusz Wesolowski, Sep 10 2013
Second column of table A210530. - Boris Putievskiy, Jan 29 2013
For n > 1, the basic period of A000166(k) (mod n) (Miska, 2016). - Amiram Eldar, Mar 03 2021

Crossrefs

Cf. A000166, A109042, A152749 (partial sums).
Cf. A066043 (essentially the same), A000034 (=a(n)/n), A026741 (=a(n)/2).

Programs

Formula

For n > 0: a(n) = A186421(n) + A186421(n+2).
a(n) = n*2 / gcd(n, 2).
a(n) = -(n*((-1)^n-3))/2. - Stephen Crowley, Feb 11 2007
From R. J. Mathar, Aug 20 2008: (Start)
a(n) = A066043(n), n > 1.
a(n) = 2*A026741(n).
G.f.: 2*x(1+x+x^2)/((1-x)^2*(1+x)^2). (End)
a(n) = n*A000034(n). - Paul Curtz, Mar 25 2011
E.g.f.: x*(2*cosh(x) + sinh(x)). - Stefano Spezia, May 09 2021
Sum_{k=1..n} a(k) ~ (3/4) * n^2. - Amiram Eldar, Nov 26 2022

A051173 Triangle read by rows: T(n, k) = lcm(n, k).

Original entry on oeis.org

1, 2, 2, 3, 6, 3, 4, 4, 12, 4, 5, 10, 15, 20, 5, 6, 6, 6, 12, 30, 6, 7, 14, 21, 28, 35, 42, 7, 8, 8, 24, 8, 40, 24, 56, 8, 9, 18, 9, 36, 45, 18, 63, 72, 9, 10, 10, 30, 20, 10, 30, 70, 40, 90, 10, 11, 22, 33, 44, 55, 66, 77, 88, 99, 110, 11, 12, 12, 12, 12, 60, 12, 84, 24, 36, 60, 132, 12
Offset: 1

Views

Author

Keywords

Examples

			Triangle begins (for the full array see A109042):
  [1]  1;
  [2]  2,  2;
  [3]  3,  6,  3;
  [4]  4,  4, 12,  4;
  [5]  5, 10, 15, 20,  5;
  [6]  6,  6,  6, 12, 30,  6;
  [7]  7, 14, 21, 28, 35, 42,  7;
  [8]  8,  8, 24,  8, 40, 24, 56,  8;
		

Crossrefs

Cf. A109043 (column 2), A051193 (row sums), A000384 (central terms).

Programs

  • Haskell
    a051173 = lcm
    a051173_row n = a051173_tabl !! (n-1)
    a051173_tabl = map (\x -> map (lcm x) [1..x]) [1..]
    -- Reinhard Zumkeller, Aug 13 2013, Jul 07 2013
    
  • Maple
    A051173 := proc(u,v) ilcm(u,v) ; end proc: # R. J. Mathar, Apr 07 2011
  • Mathematica
    Table[LCM[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jan 30 2018 *)
  • PARI
    T(n,k) = lcm(n,k);
    tabl(nn) = for (n=1, nn, for (k=1, n, print1(T(n,k), ", ")); print;) \\ Michel Marcus, Jul 10 2017

Formula

T(n, 1) = T(n, n) = n. T(n, 2) = A109043(n). - R. J. Mathar, Apr 07 2011
T(n, k) = A075362(n, k)/A050873(n, k), 1 <= k <= n. - Reinhard Zumkeller, Apr 25 2011
T(n, k) = A051537(n, k) * A050873(n, k). - Reinhard Zumkeller, Jul 07 2013

A109044 a(n) = lcm(n,3).

Original entry on oeis.org

0, 3, 6, 3, 12, 15, 6, 21, 24, 9, 30, 33, 12, 39, 42, 15, 48, 51, 18, 57, 60, 21, 66, 69, 24, 75, 78, 27, 84, 87, 30, 93, 96, 33, 102, 105, 36, 111, 114, 39, 120, 123, 42, 129, 132, 45, 138, 141, 48, 147, 150, 51, 156, 159, 54, 165, 168, 57, 174, 177, 60, 183, 186, 63
Offset: 0

Views

Author

Mitch Harris, Jun 18 2005

Keywords

Examples

			G.f. = 3*x + 6*x^2 + 3*x^3 + 12*x^4 + 15*x^5 + 6*x^6 + 21*x^7 + 24*x^8 + ...
		

Crossrefs

Cf. A051176, A099837, A109007 (gcd(n,3)), A109042.

Programs

Formula

a(n) = 3*n/gcd(n,3) = 3*n/A109007(n).
From Bruno Berselli, Mar 11 2011: (Start)
G.f.: 3*x*(1+2*x+x^2+2*x^3+x^4)/(1-x^3)^2.
a(n) = 3*A051176(n);
a(n) = n*(7-2*A099837(n))/3 for n>0. (End)
From Wesley Ivan Hurt, Jul 24 2016: (Start)
a(n) = 2*a(n-3) - a(n-6) for n>5.
a(n) = 9*n/(5 + 4*cos(2*n*Pi/3)).
If n mod 3 = 0 then 3*floor(n/3), else 3*n. (End)
a(n) = n*(1 + 2*((n^2) mod 3)). - Timothy Hopper, Feb 23 2017
From Michael Somos, Mar 04 2017: (Start)
G.f.: 3 * x / (1 - x)^2 - 6 * x^3 / (1 - x^3)^2. -
a(n) = a(-n) for all n in Z. (End)
Sum_{k=1..n} a(k) ~ (7/6) * n^2. - Amiram Eldar, Nov 26 2022
Sum_{n>=1} (-1)^(n+1)/a(n) = 5*log(2)/9. - Amiram Eldar, Sep 08 2023

A109047 a(n) = lcm(n, 6).

Original entry on oeis.org

0, 6, 6, 6, 12, 30, 6, 42, 24, 18, 30, 66, 12, 78, 42, 30, 48, 102, 18, 114, 60, 42, 66, 138, 24, 150, 78, 54, 84, 174, 30, 186, 96, 66, 102, 210, 36, 222, 114, 78, 120, 246, 42, 258, 132, 90, 138, 282, 48, 294, 150, 102, 156, 318, 54, 330, 168, 114, 174, 354
Offset: 0

Views

Author

Mitch Harris, Jun 18 2005

Keywords

Crossrefs

Programs

Formula

a(n) = n*6/gcd(n, 6).
From R. J. Mathar, Apr 18 2011: (Start)
a(n) = 2*a(n-6) - a(n-12) = 6*A060789(n) = 6*n/A089128(n).
G.f.: 6*x*(1+x+x^2+2*x^3+5*x^4+x^5+5*x^6+2*x^7+x^8+x^9+x^10) / ( (x-1)^2*(1+x)^2*(1+x+x^2)^2*(x^2-x+1)^2 ). (End)
Sum_{k=1..n} a(k) ~ (7/4) * n^2. - Amiram Eldar, Nov 26 2022

A109049 a(n) = lcm(n, 8).

Original entry on oeis.org

0, 8, 8, 24, 8, 40, 24, 56, 8, 72, 40, 88, 24, 104, 56, 120, 16, 136, 72, 152, 40, 168, 88, 184, 24, 200, 104, 216, 56, 232, 120, 248, 32, 264, 136, 280, 72, 296, 152, 312, 40, 328, 168, 344, 88, 360, 184, 376, 48, 392, 200, 408, 104, 424, 216, 440, 56, 456, 232
Offset: 0

Views

Author

Mitch Harris, Jun 18 2005

Keywords

Crossrefs

Programs

Formula

a(n) = n*8/gcd(n, 8).
From R. J. Mathar, Apr 18 2011: (Start)
G.f.: 8*x*(x^2-x+1)*(x^12 + 2*x^11 + 4*x^10 + 3*x^9 + 4*x^8 + 4*x^7 + 7*x^6 + 4*x^5 + 4*x^4 + 3*x^3 + 4*x^2 + 2*x + 1) / ( (x-1)^2 *(1+x)^2 *(x^2+1)^2 *(x^4+1)^2 ).
a(n) = 8*A106609(n) = 8*n/A109011(n). (End)
Sum_{k=1..n} a(k) ~ (43/16) * n^2. - Amiram Eldar, Nov 26 2022

A109046 a(n) = lcm(n, 5).

Original entry on oeis.org

0, 5, 10, 15, 20, 5, 30, 35, 40, 45, 10, 55, 60, 65, 70, 15, 80, 85, 90, 95, 20, 105, 110, 115, 120, 25, 130, 135, 140, 145, 30, 155, 160, 165, 170, 35, 180, 185, 190, 195, 40, 205, 210, 215, 220, 45, 230, 235, 240, 245, 50, 255, 260, 265, 270, 55, 280, 285, 290
Offset: 0

Views

Author

Mitch Harris, Jun 18 2005

Keywords

Crossrefs

Programs

  • Magma
    [Lcm(n,5): n in [0..100]]; // Vincenzo Librandi, Apr 18 2011
  • Mathematica
    a[n_] := LCM[n, 5]; Array[a, 60, 0] (* Amiram Eldar, Nov 26 2022 *)
    LinearRecurrence[{0,0,0,0,2,0,0,0,0,-1},{0,5,10,15,20,5,30,35,40,45},60] (* Harvey P. Dale, Oct 08 2023 *)
  • Sage
    [lcm(n,5)for n in range(0, 59)] # Zerinvary Lajos, Jun 07 2009
    

Formula

a(n) = n*5/gcd(n, 5) = 5*n/A109009(n) = 5*A060791(n).
G.f.: 5*x*(x^4+x^3+3*x^2+x+1)*(x^4+x^3-x^2+x+1) / ( (x-1)^2*(x^4+x^3+x^2+x+1)^2 ). - R. J. Mathar, Apr 18 2011
Sum_{k=1..n} a(k) ~ (21/10) * n^2. - Amiram Eldar, Nov 26 2022
Sum_{n>=1} (-1)^(n+1)/a(n) = 9*log(2)/25. - Amiram Eldar, Sep 08 2023

A109051 a(n) = lcm(n,10).

Original entry on oeis.org

0, 10, 10, 30, 20, 10, 30, 70, 40, 90, 10, 110, 60, 130, 70, 30, 80, 170, 90, 190, 20, 210, 110, 230, 120, 50, 130, 270, 140, 290, 30, 310, 160, 330, 170, 70, 180, 370, 190, 390, 40, 410, 210, 430, 220, 90, 230, 470, 240, 490, 50, 510, 260, 530, 270, 110, 280
Offset: 0

Views

Author

Mitch Harris, Jun 18 2005

Keywords

Crossrefs

Programs

  • Magma
    [Lcm(n,10): n in [0..100]]; // Vincenzo Librandi, Apr 18 2011
    
  • Maple
    q:= [seq(10/igcd(i,10),i=1..10)]:
    [0,seq(seq((10*i+j)*q[j],j=1..10),i=0..10)]; # Robert Israel, Feb 23 2016
  • Mathematica
    a[n_] := LCM[n, 10]; Array[a, 60, 0] (* Amiram Eldar, Nov 26 2022 *)
  • PARI
    a(n) = lcm(n, 10); \\ Michel Marcus, Feb 23 2016
  • Sage
    [lcm(n,10)for n in range(0, 57)] # Zerinvary Lajos, Jun 07 2009
    

Formula

a(n) = n*10/gcd(n, 10).
a(n) = 10*n/A109013(n) = 10*A106611(n). - R. J. Mathar, Apr 18 2011
G.f.: 10*x*(1 +x +3*x^2 +2*x^3 +x^4 +3*x^5 +7*x^6 +4*x^7 +9*x^8 +x^9 +9*x^10 +4*x^11 +7*x^12 +3*x^13 +x^14 +2*x^15 +3*x^16 +x^17 +x^18)/(1 -x^10)^2. - Robert Israel, Feb 23 2016
Sum_{k=1..n} a(k) ~ (63/20) * n^2. - Amiram Eldar, Nov 26 2022

A109053 a(n) = lcm(n,12).

Original entry on oeis.org

0, 12, 12, 12, 12, 60, 12, 84, 24, 36, 60, 132, 12, 156, 84, 60, 48, 204, 36, 228, 60, 84, 132, 276, 24, 300, 156, 108, 84, 348, 60, 372, 96, 132, 204, 420, 36, 444, 228, 156, 120, 492, 84, 516, 132, 180, 276, 564, 48, 588, 300, 204, 156, 636, 108, 660, 168
Offset: 0

Views

Author

Mitch Harris, Jun 18 2005

Keywords

Crossrefs

Programs

  • GAP
    List([0..60],n->Lcm(n,12)); # Muniru A Asiru, Mar 04 2019
    
  • Magma
    [LCM(n, 12): n in [0..60]]; // G. C. Greubel, Mar 06 2019
  • Mathematica
    Array[LCM[#,12]&,60,0] (* Harvey P. Dale, Mar 26 2015 *)
  • PARI
    concat(0, Vec(12*x*(1 + x + x^2 + x^3 + 5*x^4 + x^5 + 7*x^6 + 2*x^7 + 3*x^8 + 5*x^9 + 11*x^10 + x^11 + 11*x^12 + 5*x^13 + 3*x^14 + 2*x^15 + 7*x^16 + x^17 + 5*x^18 + x^19 + x^20 + x^21 + x^22) / (1 - 2*x^12 + x^24) + O(x^40))) \\ Colin Barker, Mar 04 2019
    
  • PARI
    for(n=0,60, print1(lcm(n,12), ", ")) \\ G. C. Greubel, Mar 06 2019
    
  • Sage
    [lcm(n,12) for n in range(0,57)] # Zerinvary Lajos, Jun 09 2009
    

Formula

a(n) = n*12/gcd(n, 12).
a(n) = 12*A051724(n). - R. J. Mathar, Feb 12 2019
From Colin Barker, Mar 04 2019: (Start)
G.f.: 12*x*(1 + x + x^2 + x^3 + 5*x^4 + x^5 + 7*x^6 + 2*x^7 + 3*x^8 + 5*x^9 + 11*x^10 + x^11 + 11*x^12 + 5*x^13 + 3*x^14 + 2*x^15 + 7*x^16 + x^17 + 5*x^18 + x^19 + x^20 + x^21 + x^22) / (1 - 2*x^12 + x^24).
a(n) = 2*a(n-12) - a(n-24) for n>23.
(End)
Sum_{k=1..n} a(k) ~ (77/24) * n^2. - Amiram Eldar, Nov 26 2022

A109045 a(n) = lcm(n,4).

Original entry on oeis.org

0, 4, 4, 12, 4, 20, 12, 28, 8, 36, 20, 44, 12, 52, 28, 60, 16, 68, 36, 76, 20, 84, 44, 92, 24, 100, 52, 108, 28, 116, 60, 124, 32, 132, 68, 140, 36, 148, 76, 156, 40, 164, 84, 172, 44, 180, 92, 188, 48, 196, 100, 204, 52, 212, 108, 220, 56, 228, 116, 236, 60
Offset: 0

Views

Author

Mitch Harris, Jun 18 2005

Keywords

Crossrefs

Programs

Formula

a(n) = 4n/gcd(n, 4).
a(n) = A084351(n), n > 1. - R. J. Mathar, Aug 20 2008
From R. J. Mathar, Apr 18 2011: (Start)
G.f.: 4*x*(1+x+3*x^2+x^3+3*x^4+x^5+x^6) / ( (x-1)^2*(1+x)^2*(x^2+1)^2 ).
a(n) = 4*n/A109008(n) = 4*A060819(n). (End)
Sum_{k=1..n} a(k) ~ (11/8) * n^2. - Amiram Eldar, Nov 26 2022

A109048 a(n) = lcm(n, 7).

Original entry on oeis.org

0, 7, 14, 21, 28, 35, 42, 7, 56, 63, 70, 77, 84, 91, 14, 105, 112, 119, 126, 133, 140, 21, 154, 161, 168, 175, 182, 189, 28, 203, 210, 217, 224, 231, 238, 35, 252, 259, 266, 273, 280, 287, 42, 301, 308, 315, 322, 329, 336, 49, 350, 357, 364, 371, 378, 385, 56
Offset: 0

Views

Author

Mitch Harris, Jun 18 2005

Keywords

Crossrefs

Programs

Formula

a(n) = n*7/gcd(n, 7).
a(n) = 7*A106608(n) = 7*n/A109010(n). - R. J. Mathar, Apr 18 2011
Sum_{k=1..n} a(k) ~ (43/14) * n^2. - Amiram Eldar, Nov 26 2022
Sum_{n>=1} (-1)^(n+1)/a(n) = 13*log(2)/49. - Amiram Eldar, Sep 08 2023
Showing 1-10 of 14 results. Next