cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A051176 If n mod 3 = 0 then n/3 else n.

Original entry on oeis.org

0, 1, 2, 1, 4, 5, 2, 7, 8, 3, 10, 11, 4, 13, 14, 5, 16, 17, 6, 19, 20, 7, 22, 23, 8, 25, 26, 9, 28, 29, 10, 31, 32, 11, 34, 35, 12, 37, 38, 13, 40, 41, 14, 43, 44, 15, 46, 47, 16, 49, 50, 17, 52, 53, 18, 55, 56, 19, 58, 59, 20, 61, 62, 21, 64, 65, 22, 67
Offset: 0

Views

Author

Keywords

Comments

Numerator of n/3. - Wesley Ivan Hurt, Jul 18 2014

Examples

			G.f. = x + 2*x^2 + x^3 + 4*x^4 + 5*x^5 + 2*x^6 + 7*x^7 + 8*x^8 + 3*x^9 + ...
		

Crossrefs

Cf. A026741, A051176, A060819, A060791, A060789 for n / GCD(n,k) for k=2..6. See also A106608 thru A106612 (k = 7 thru 11), A051724 (k = 12), A106614 thru A106621 (k = 13 thru 20).

Programs

Formula

a(n) = n / gcd(n,3).
G.f.: x*(1+2*x+x^2+2*x^3+x^4)/(1-x^3)^2 = x*(1+2*x+x^2+2*x^3+x^4) / ( (x-1)^2*(1+x+x^2)^2 ). - Len Smiley, Apr 30 2001
Multiplicative with a(3^e) = 3^(e-1), a(p^e) = p^e otherwise. - Mitch Harris, Jun 09 2005
a(n) = A167192(n+3, 3). - Reinhard Zumkeller, Oct 30 2009
From R. J. Mathar, Apr 18 2011: (Start)
a(n) = A109044(n)/3.
Dirichlet g.f.: zeta(s-1)*(1-2/3^s). (End)
a(n) = n/3 * (1 + 2*A011655(n)) = n*A144437(n)/3. - Timothy Hopper, Feb 23 2017
G.f.: x /(1 - x)^2 - 2 * x^3/(1 - x^3)^2. - Michael Somos, Mar 05 2017
a(n) = a(-n) for all n in Z. - Michael Somos, Mar 05 2017
a(n) = n*(7 - 4*cos((2*Pi*n)/3)) / 9. - Colin Barker, Mar 05 2017
Sum_{k=1..n} a(k) ~ (7/18) * n^2. - Amiram Eldar, Nov 25 2022
Sum_{n>=1} (-1)^(n+1)/a(n) = 5*log(2)/3. - Amiram Eldar, Sep 08 2023

A109042 Square array read by antidiagonals: A(n, k) = lcm(n, k) for n >= 0, k >= 0.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 3, 2, 3, 0, 0, 4, 6, 6, 4, 0, 0, 5, 4, 3, 4, 5, 0, 0, 6, 10, 12, 12, 10, 6, 0, 0, 7, 6, 15, 4, 15, 6, 7, 0, 0, 8, 14, 6, 20, 20, 6, 14, 8, 0, 0, 9, 8, 21, 12, 5, 12, 21, 8, 9, 0, 0, 10, 18, 24, 28, 30, 30, 28, 24, 18, 10, 0, 0, 11, 10, 9, 8, 35, 6, 35, 8, 9, 10, 11, 0
Offset: 0

Views

Author

Mitch Harris, Jun 18 2005

Keywords

Examples

			Seen as an array:
  [0] 0, 0,  0,  0,  0,  0,  0,  0,  0,  0, ...
  [1] 0, 1,  2,  3,  4,  5,  6,  7,  8,  9, ...
  [2] 0, 2,  2,  6,  4, 10,  6, 14,  8, 18, ...
  [3] 0, 3,  6,  3, 12, 15,  6, 21, 24,  9, ...
  [4] 0, 4,  4, 12,  4, 20, 12, 28,  8, 36, ...
  [5] 0, 5, 10, 15, 20,  5, 30, 35, 40, 45, ...
  [6] 0, 6,  6,  6, 12, 30,  6, 42, 24, 18, ...
  [7] 0, 7, 14, 21, 28, 35, 42,  7, 56, 63, ...
  [8] 0, 8,  8, 24,  8, 40, 24, 56,  8, 72, ...
  [9] 0, 9, 18,  9, 36, 45, 18, 63, 72,  9, ...
.
Seen as a triangle T(n, k) = lcm(n - k, k).
  [0] 0;
  [1] 0, 0;
  [2] 0, 1,  0;
  [3] 0, 2,  2,  0;
  [4] 0, 3,  2,  3,  0;
  [5] 0, 4,  6,  6,  4,  0;
  [6] 0, 5,  4,  3,  4,  5, 0;
  [7] 0, 6, 10, 12, 12, 10, 6,  0;
  [8] 0, 7,  6, 15,  4, 15, 6,  7, 0;
  [9] 0, 8, 14,  6, 20, 20, 6, 14, 8, 0;
		

Crossrefs

Rows A000027, A109043, A109044, A109045, A109046, A109047, A109048, A109049, A109050, A109051, A109052, A109053, A006580 (row sums of triangle), A001477 (main diagonal, central terms).
Variants: A003990 is (1, 1) based, A051173 (T(n,k) = lcm(n,k)).

Programs

  • Maple
    T := (n, k) -> ilcm(n - k, k):
    for n from 0 to 9 do seq(T(n, k), k = 0..n) od;  # Peter Luschny, Mar 24 2025

Formula

lcm(n, k) = n*k / gcd(n, k) for (n, k) != (0, 0).

A130724 a(n) = lcm(n,3) / gcd(n,3).

Original entry on oeis.org

0, 3, 6, 1, 12, 15, 2, 21, 24, 3, 30, 33, 4, 39, 42, 5, 48, 51, 6, 57, 60, 7, 66, 69, 8, 75, 78, 9, 84, 87, 10, 93, 96, 11, 102, 105, 12, 111, 114, 13, 120, 123, 14, 129, 132, 15, 138, 141, 16, 147, 150, 17, 156, 159, 18, 165, 168, 19, 174, 177, 20, 183, 186
Offset: 0

Views

Author

W. Neville Holmes, Jul 04 2007

Keywords

Examples

			a(7) = 21 because lcm(3,7) = 21, gcd(3,7) = 1 and 21/1 = 21.
		

Crossrefs

Programs

Formula

a(n) = A109044(n) / A109007(n).
From Wesley Ivan Hurt, Jul 24 2016: (Start)
G.f.: x*(3 + 6*x + x^2 + 6*x^3 + 3*x^4)/(x^3 - 1)^2.
a(n) = 2*a(n-3) - a(n-6) for n>5.
a(n) = 27*n/(5 + 4*cos(2*n*Pi/3))^2.
If n mod 3 = 0, then n/3, else 3*n.
a(n) = lcm(numerator(n/3), denominator(n/3)). (End)
Sum_{k=1..n} a(k) ~ (19/18)*n^2. - Amiram Eldar, Oct 07 2023

Extensions

Corrected and extended by Harvey P. Dale, May 16 2013

A066393 Coordination sequence for (9^3, 3.9^2) net with respect to a vertex of type 9^3.

Original entry on oeis.org

1, 3, 6, 6, 12, 15, 12, 21, 24, 18, 30, 33, 24, 39, 42, 30, 48, 51, 36, 57, 60, 42, 66, 69, 48, 75, 78, 54, 84, 87, 60, 93, 96, 66, 102, 105, 72, 111, 114, 78, 120, 123, 84, 129, 132, 90, 138, 141, 96, 147, 150, 102, 156, 159, 108, 165, 168, 114
Offset: 0

Views

Author

N. J. A. Sloane, Dec 24 2001

Keywords

Comments

This net may be regarded as a tiling of the plane by 9-gons and triangles. There are two kinds of vertices: (a) 9^3 vertices, where three 9-gons meet, and (b) 3.9^2 vertices, where a triangle and two 9-gons meet. The present sequence is the coordination sequence with respect to a vertex of type 9^3. See also A319980.

Crossrefs

Programs

  • Maple
    seq(coeftayl((1+3*x+6*x^2+4*x^3+6*x^4+3*x^5+x^6)/(1-x^3)^2, x = 0, k), k=0..60); # Muniru A Asiru, Feb 13 2018

Formula

G.f.: (1+3*x+6*x^2+4*x^3+6*x^4+3*x^5+x^6)/(1-x^3)^2.
a(n) = (3*n + lcm(n,3))/2, for n>=1. - Ridouane Oudra, Jan 22 2021
a(n) = 3*A186101(n), for n>=1. - Ridouane Oudra, Jun 11 2025

A130723 Least common multiple of 3 and n^2+n+1.

Original entry on oeis.org

3, 3, 21, 39, 21, 93, 129, 57, 219, 273, 111, 399, 471, 183, 633, 723, 273, 921, 1029, 381, 1263, 1389, 507, 1659, 1803, 651, 2109, 2271, 813, 2613, 2793, 993, 3171, 3369, 1191, 3783, 3999, 1407, 4449, 4683, 1641, 5169, 5421, 1893, 5943, 6213, 2163, 6771
Offset: 0

Views

Author

W. Neville Holmes, Jul 04 2007

Keywords

Crossrefs

Cf. A109044.

Programs

  • Mathematica
    Table[LCM[3,n^2+n+1],{n,0,60}] (* Harvey P. Dale, Mar 03 2017 *)
  • PARI
    a(n) = lcm(3, n^2+n+1) \\ Michel Marcus, Jul 11 2013
    
  • PARI
    Vec(3*(1 + x + 7*x^2 + 10*x^3 + 4*x^4 + 10*x^5 + 7*x^6 + x^7 + x^8) / ((1 - x)^3*(1 + x + x^2)^3) + O(x^100)) \\ Colin Barker, Mar 08 2017

Formula

From Colin Barker, Mar 08 2017: (Start)
G.f.: 3*(1 + x + 7*x^2 + 10*x^3 + 4*x^4 + 10*x^5 + 7*x^6 + x^7 + x^8) / ((1 - x)^3*(1 + x + x^2)^3).
a(n) = 3*a(n-3) - 3*a(n-6) + a(n-9) for n>8.
(End)

Extensions

Corrected by Harvey P. Dale, Mar 03 2017

A187601 n/2 times period 6 sequence [1, 2, 3, 4, 3, 2, ...].

Original entry on oeis.org

0, 1, 3, 6, 6, 5, 3, 7, 12, 18, 15, 11, 6, 13, 21, 30, 24, 17, 9, 19, 30, 42, 33, 23, 12, 25, 39, 54, 42, 29, 15, 31, 48, 66, 51, 35, 18, 37, 57, 78, 60, 41, 21, 43, 66, 90, 69, 47, 24, 49, 75, 102, 78, 53, 27, 55, 84, 114, 87, 59, 30, 61, 93, 126, 96, 65, 33, 67, 102
Offset: 0

Views

Author

Bruno Berselli, Mar 11 2011

Keywords

Comments

A007310 is a subsequence.

Crossrefs

Cf. A186813.
Cf. A109044, A088439 (by Superseeker).

Programs

  • Magma
    [(n/2)*[1, 2, 3, 4, 3, 2][n mod 6 + 1]: n in [0..68]]; /* Other: */ [n*(5-2*(-1)^Floor((n+1)/3)-(-1)^n)/4: n in [0..68]];
  • Mathematica
    CoefficientList[Series[x (1 + x + x^2 - x^3 + x^4 + x^5 + x^6) / ((1 - x)^2 (1 + x)^2 (1 - x + x^2)^2), {x, 0, 70}], x] (* Vincenzo Librandi, Aug 19 2013 *)
    LinearRecurrence[{2,-1,-2,4,-2,-1,2,-1},{0,1,3,6,6,5,3,7},90] (* Harvey P. Dale, Aug 20 2017 *)

Formula

a(n) = (n/2)*A028356(n).
G.f.: x*(1+x+x^2-x^3+x^4+x^5+x^6)/((1-x)^2*(1+x)^2*(1-x+x^2)^2).
a(-n) = -a(n). a(n) = 2*a(n-1)-a(n-2)-2*a(n-3)+4*a(n-4)-2*a(n-5)-a(n-6)+2*a(n-7)-a(n-8) for n>7.
a(n) = n*(5-2*(-1)^floor((n+1)/3)-(-1)^n)/4.
Showing 1-6 of 6 results.