cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A060789 a(n) = n / (gcd(n,2) * gcd(n,3)).

Original entry on oeis.org

1, 1, 1, 2, 5, 1, 7, 4, 3, 5, 11, 2, 13, 7, 5, 8, 17, 3, 19, 10, 7, 11, 23, 4, 25, 13, 9, 14, 29, 5, 31, 16, 11, 17, 35, 6, 37, 19, 13, 20, 41, 7, 43, 22, 15, 23, 47, 8, 49, 25, 17, 26, 53, 9, 55, 28, 19, 29, 59, 10, 61, 31, 21, 32, 65, 11, 67, 34, 23, 35, 71, 12, 73, 37, 25, 38, 77
Offset: 1

Views

Author

Len Smiley, Apr 26 2001

Keywords

Comments

a(n+2) is absolute value of numerator of determinant of n X n matrix with M(i,j) = 2/(i(i+1)) if i=j otherwise 1. - Alexander Adamchuk, May 19 2006
Numerator of n/(n+6). - Gerry Martens, Aug 06 2015
In addition to being multiplicative, this sequence is also a strong divisibility sequence, that is, gcd(a(n),a(m)) = a(gcd(n, m)) for n, m >= 1. In particular, it follows that a(n) is a divisibility sequence: if n divides m then a(n) divides a(m). - Peter Bala, Feb 20 2019
Connected to the Diophantine equation x^2 + (x + 1)^2 + … + (x + k)^2 = C, C an integer, x >= 0, k >= 0. Rewritten it is (k + 1)*x^2 + k*(k+1)*x + k*(k + 1)*(2*k + 1)/6 = C. The existence of its solutions depends on gcd(k + 1, k*(k + 1), k*(k + 1)*(2*k + 1)/6). - Ctibor O. Zizka, Oct 04 2023

Crossrefs

Cf. other sequences given by the formula n/gcd(n,k) = numerator(n/(n + k)): A026741 (k = 2), A051176 (k = 3), A060819 (k = 4), A060791 (k = 5), A106608 thru A106612 (k = 7 thru 11), A051724 (k = 12), A106614 thru A106621 (k = 13 thru 20).

Programs

  • GAP
    List([1..80],n->n/(Gcd(n,2)*Gcd(n,3))); # Muniru A Asiru, Feb 20 2019
  • Magma
    [n/(Gcd(n,2)*Gcd(n,3)) : n in [1..100]]; // Wesley Ivan Hurt, Aug 06 2015
    
  • Magma
    I:=[1,1,1,2,5,1,7,4,3,5,11,2]; [n le 12 select I[n] else 2*Self(n-6)-Self(n-12): n in [1..80]]; // Vincenzo Librandi, Aug 07 2015
    
  • Maple
    a := proc(n): if n = 1 then 1 else denom((4*n-6)/n) fi: end: seq(a(n), n=1..77); # Johannes W. Meijer, Dec 19 2012
  • Mathematica
    Numerator[Table[(-1)^(n+1) Det[ DiagonalMatrix[ Table[ 2/(i(i+1)) - 1, {i, 1, n-2} ] ] + 1 ], {n, 30} ]] (* Alexander Adamchuk, May 19 2006 *)
    Table[Numerator[(n+3)/(n+2)/(n+1)/n],{n,60}] (* Vladimir Joseph Stephan Orlovsky, Nov 17 2009 *)
    Table[n/(GCD[n, 2] GCD[n, 3]), {n, 100}] (* Wesley Ivan Hurt, Aug 06 2015 *)
    LinearRecurrence[{0,0,0,0,0,2,0,0,0,0,0,-1}, {1,1,1,2,5,1,7,4,3,5,11,2}, 80] (* Vincenzo Librandi, Aug 07 2015 *)
  • PARI
    a(n) = { n / (gcd(n, 2) * gcd(n, 3)) } \\ Harry J. Smith, Jul 11 2009
    
  • Sage
    [lcm(n,6)/6 for n in range(1, 78)] # Zerinvary Lajos, Jun 07 2009
    

Formula

G.f.: x*(1 + x + x^2 + 2*x^3 + 5*x^4 + x^5 + 5*x^6 + 2*x^7 + x^8 + x^9 + x^10)/(1 - x^6)^2.
Multiplicative with a(2^e)=2^(e-1), a(3^e)=3^(e-1), a(p^e)=p^e, p>3. - Vladeta Jovovic, Sep 09 2004
a(n) = Numerator[(-1)^(n+1)*Det[DiagonalMatrix[Table[2/(i(i+1))-1, {i,1,n-2}]]+1]], n>2. - Alexander Adamchuk, May 19 2006
a(n) divides n. a(6k) = k for integer k>0. a(p^k) = p^k for prime p>3 and integer k>0. - Alexander Adamchuk, Sep 20 2006
From R. J. Mathar, Apr 18 2011: (Start)
a(n) = A109047(n)/6.
Dirichlet g.f. zeta(s-1)*(1-1/2^s-2/3^s+2/6^s). (End)
a(n) = denominator((4*n-6)/n), n >= 2, with a(1) = 1. - Johannes W. Meijer, Dec 19 2012
a((2*n-1)*2^p) = A011782(p)*A146535(n), p >= 0. - Johannes W. Meijer, Feb 06 2013
a(n) = 2*a(n-6) - a(n-12) for n >= 12. - Robert Israel, Aug 06 2015
a(n) = gcd((n-1)*n*(n+1)/6, n). - Lechoslaw Ratajczak, Feb 16 2017
From Peter Bala, Feb 13 2019: (Start)
a(n) = n/gcd(n,n + 6) = n/gcd(n,6).
a(n) = n/b(n), where b(n) is the purely periodic sequence [1,2,3,2,1,6,...] with period 6.
a(n) is a quasi-polynomial in n: a(6*n+1) = 6*n + 1; a(6*n+2) = 3*n + 1; a(6*n+3) = 2*n + 1; a(6*n+4) = 3*n + 2; a(6*n+5) = 6*n + 5; a(6*n) = n.
a(n) = numerator(n/(n + 6)); a(n) = denominator((n + 6)/n).
(End)
Sum_{k=1..n} a(k) ~ 7*n^2/24. - Vaclav Kotesovec, Aug 09 2022
From Ctibor O. Zizka, Oct 04 2023: (Start)
For k >=0, a(k) = gcd(k + 1, k*(k + 1), k*(k + 1)*(2*k + 1)/6).
If (k mod 6) = 0 or 4 then a(k) = (k + 1).
If (k mod 6) = 1 or 3 then a(k) = (k + 1)/2.
If (k mod 6) = 2 then a(k) = (k + 1)/3.
If (k mod 6) = 5 then a(k) = (k + 1)/6. (End)

A109042 Square array read by antidiagonals: A(n, k) = lcm(n, k) for n >= 0, k >= 0.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 3, 2, 3, 0, 0, 4, 6, 6, 4, 0, 0, 5, 4, 3, 4, 5, 0, 0, 6, 10, 12, 12, 10, 6, 0, 0, 7, 6, 15, 4, 15, 6, 7, 0, 0, 8, 14, 6, 20, 20, 6, 14, 8, 0, 0, 9, 8, 21, 12, 5, 12, 21, 8, 9, 0, 0, 10, 18, 24, 28, 30, 30, 28, 24, 18, 10, 0, 0, 11, 10, 9, 8, 35, 6, 35, 8, 9, 10, 11, 0
Offset: 0

Views

Author

Mitch Harris, Jun 18 2005

Keywords

Examples

			Seen as an array:
  [0] 0, 0,  0,  0,  0,  0,  0,  0,  0,  0, ...
  [1] 0, 1,  2,  3,  4,  5,  6,  7,  8,  9, ...
  [2] 0, 2,  2,  6,  4, 10,  6, 14,  8, 18, ...
  [3] 0, 3,  6,  3, 12, 15,  6, 21, 24,  9, ...
  [4] 0, 4,  4, 12,  4, 20, 12, 28,  8, 36, ...
  [5] 0, 5, 10, 15, 20,  5, 30, 35, 40, 45, ...
  [6] 0, 6,  6,  6, 12, 30,  6, 42, 24, 18, ...
  [7] 0, 7, 14, 21, 28, 35, 42,  7, 56, 63, ...
  [8] 0, 8,  8, 24,  8, 40, 24, 56,  8, 72, ...
  [9] 0, 9, 18,  9, 36, 45, 18, 63, 72,  9, ...
.
Seen as a triangle T(n, k) = lcm(n - k, k).
  [0] 0;
  [1] 0, 0;
  [2] 0, 1,  0;
  [3] 0, 2,  2,  0;
  [4] 0, 3,  2,  3,  0;
  [5] 0, 4,  6,  6,  4,  0;
  [6] 0, 5,  4,  3,  4,  5, 0;
  [7] 0, 6, 10, 12, 12, 10, 6,  0;
  [8] 0, 7,  6, 15,  4, 15, 6,  7, 0;
  [9] 0, 8, 14,  6, 20, 20, 6, 14, 8, 0;
		

Crossrefs

Rows A000027, A109043, A109044, A109045, A109046, A109047, A109048, A109049, A109050, A109051, A109052, A109053, A006580 (row sums of triangle), A001477 (main diagonal, central terms).
Variants: A003990 is (1, 1) based, A051173 (T(n,k) = lcm(n,k)).

Programs

  • Maple
    T := (n, k) -> ilcm(n - k, k):
    for n from 0 to 9 do seq(T(n, k), k = 0..n) od;  # Peter Luschny, Mar 24 2025

Formula

lcm(n, k) = n*k / gcd(n, k) for (n, k) != (0, 0).

A283443 a(n) = lcm(n,6) / gcd(n,6).

Original entry on oeis.org

0, 6, 3, 2, 6, 30, 1, 42, 12, 6, 15, 66, 2, 78, 21, 10, 24, 102, 3, 114, 30, 14, 33, 138, 4, 150, 39, 18, 42, 174, 5, 186, 48, 22, 51, 210, 6, 222, 57, 26, 60, 246, 7, 258, 66, 30, 69, 282, 8, 294, 75, 34, 78, 318, 9, 330, 84, 38, 87, 354, 10, 366, 93, 42
Offset: 0

Views

Author

Colin Barker, Mar 07 2017

Keywords

Comments

If n == 2 or 4 (mod 6) then a(n) = 3*n/2; if n == 3 (mod 6) then a(n) = 2*n/3; if n == 1 or 5 (mod 6) then a(n) = 6*n; otherwise, a(n) = n/6. Examples: n = 50 = 6*8+2, a(50) = 3*50/2 = 75; n = 23 = 6*3+5, a(23) = 6*23 = 138. - Bruno Berselli, Mar 08 2017

Crossrefs

Programs

  • Mathematica
    Table[LCM[n, 6] / GCD[n, 6], {n,0,63}] (* Indranil Ghosh, Mar 08 2017 *)
  • PARI
    concat(0, Vec(x*(6 + 3*x + 2*x^2 + 6*x^3 + 30*x^4 + x^5 + 30*x^6 + 6*x^7 + 2*x^8 + 3*x^9 + 6*x^10) / ((1 - x)^2*(1 + x)^2*(1 - x + x^2)^2*(1 + x + x^2)^2) + O(x^100)))
    
  • PARI
    {for (n=0, 63, print1((lcm(n, 6) / gcd(n, 6)),", "))}; \\ Indranil Ghosh, Mar 08 2017

Formula

G.f.: x*(6 + 3*x + 2*x^2 + 6*x^3 + 30*x^4 + x^5 + 30*x^6 + 6*x^7 + 2*x^8 + 3*x^9 + 6*x^10) / ((1 - x)^2*(1 + x)^2*(1 - x + x^2)^2*(1 + x + x^2)^2).
a(n) = 2*a(n-6) - a(n-12) for n>11.
a(n) = A109047(n)/A089128(n). - R. J. Mathar, Feb 12 2019
Sum_{k=1..n} a(k) ~ (95/72)*n^2. - Amiram Eldar, Oct 07 2023

A353091 Irregular triangle read by rows: T(n, k) is the number of n-step closed walks on the hexagonal lattice having algebraic area k.

Original entry on oeis.org

1, 6, 0, 6, 66, 0, 12, 0, 150, 0, 30, 1020, 0, 420, 0, 84, 0, 6, 0, 3444, 0, 1302, 0, 252, 0, 42, 19890, 0, 11952, 0, 4284, 0, 984, 0, 216, 0, 24, 0, 82062, 0, 42972, 0, 14814, 0, 4248, 0, 990, 0, 216, 0, 18, 449976, 0, 327420, 0, 158970, 0, 57180, 0, 18780, 0, 5190, 0, 1350, 0, 270, 0, 30
Offset: 0

Views

Author

Andrey Zabolotskiy, Apr 22 2022

Keywords

Comments

Rows 0 and 2 have 1 element each; row 1 is empty; for n > 2, we have 0 <= k <= A069813(n).
Rows can be extended to negative k with T(n, -k) = T(n, k). Sums of such extended rows give A002898.

Examples

			The triangle begins:
[1]
[]
[6]
[0, 6]
[66, 0, 12]
[0, 150, 0, 30]
[1020, 0, 420, 0, 84, 0, 6]
[0, 3444, 0, 1302, 0, 252, 0, 42]
[19890, 0, 11952, 0, 4284, 0, 984, 0, 216, 0, 24]
[0, 82062, 0, 42972, 0, 14814, 0, 4248, 0, 990, 0, 216, 0, 18]
[449976, 0, 327420, 0, 158970, 0, 57180, 0, 18780, 0, 5190, 0, 1350, 0, 270, 0, 30]
...
		

Crossrefs

Cf. A069813 (greatest area), A002898 (all closed walks), A352838 (square lattice).
For n > 1, row n seems to end with A109047(n).
Showing 1-4 of 4 results.