cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A051724 Numerator of n/12.

Original entry on oeis.org

0, 1, 1, 1, 1, 5, 1, 7, 2, 3, 5, 11, 1, 13, 7, 5, 4, 17, 3, 19, 5, 7, 11, 23, 2, 25, 13, 9, 7, 29, 5, 31, 8, 11, 17, 35, 3, 37, 19, 13, 10, 41, 7, 43, 11, 15, 23, 47, 4, 49, 25, 17, 13, 53, 9, 55, 14, 19, 29, 59, 5, 61, 31, 21, 16, 65, 11, 67, 17, 23, 35, 71
Offset: 0

Views

Author

Keywords

Comments

Or, numerator of n/(n+12).
Arises in the equal-tempered musical scale - see Goldstein (1977), Table 1. - N. J. A. Sloane, Aug 29 2018
A strong divisibility sequence: gcd(a(n),a(m)) = a(gcd(n,m)) for n, m >= 1. - Peter Bala, Feb 24 2019

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 269.

Crossrefs

Cf. Sequences given by the formula numerator(n/(n + k)): A026741 (k = 2), A051176 (k = 3), A060819 (k = 4), A060791 (k = 5), A060789 (k = 6), A106608 thru A106612 (k = 7 thru 11), A106614 thru A106621 (k = 13 thru 20).

Programs

Formula

From David W. Wilson, Jun 12 2005: (Start)
a(n) = n/gcd(n, 12).
Multiplicative with a(2^e) = 2^max(0, e-2), a(3^e) = 3^max(0,e-1), a(p^e) = p^e otherwise. (End)
From R. J. Mathar, Apr 18 2011: (Start)
a(n) = A109053(n)/12.
Dirichlet g.f.: zeta(s-1)*(1 - 2/3^s - 1/2^s + 2/6^s - 1/4^s + 2/12^s). (End)
From Peter Bala, Feb 24 2019: (Start)
a(n) = n/gcd(n,12) is a quasi-polynomial in n since gcd(n,12) is a purely periodic sequence of period 12.
O.g.f.: F(x) - F(x^2) - 2*F(x^3) - F(x^4) + 2*F(x^6) + 2*F(x^12), where F(x) = x/(1 - x)^2.
O.g.f. for reciprocals: Sum_{n >= 1} x^n/a(n) = Sum_{d divides 12} (phi(d)/d) * log(1/(1 - x^d)) = log(1/(1 - x)) + (1/2)*log(1/(1 - x^2)) + (2/3)*log(1/(1 - x^3)) + (2/4)*log(1/(1 - x^4)) + (2/6)*log(1/(1 - x^6)) + (4/12)*log(1/(1 - x^12)), where phi(n) denotes the Euler totient function A000010. (End)
Sum_{k=1..n} a(k) ~ (77/288) * n^2. - Amiram Eldar, Nov 25 2022

A109042 Square array read by antidiagonals: A(n, k) = lcm(n, k) for n >= 0, k >= 0.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 3, 2, 3, 0, 0, 4, 6, 6, 4, 0, 0, 5, 4, 3, 4, 5, 0, 0, 6, 10, 12, 12, 10, 6, 0, 0, 7, 6, 15, 4, 15, 6, 7, 0, 0, 8, 14, 6, 20, 20, 6, 14, 8, 0, 0, 9, 8, 21, 12, 5, 12, 21, 8, 9, 0, 0, 10, 18, 24, 28, 30, 30, 28, 24, 18, 10, 0, 0, 11, 10, 9, 8, 35, 6, 35, 8, 9, 10, 11, 0
Offset: 0

Views

Author

Mitch Harris, Jun 18 2005

Keywords

Examples

			Seen as an array:
  [0] 0, 0,  0,  0,  0,  0,  0,  0,  0,  0, ...
  [1] 0, 1,  2,  3,  4,  5,  6,  7,  8,  9, ...
  [2] 0, 2,  2,  6,  4, 10,  6, 14,  8, 18, ...
  [3] 0, 3,  6,  3, 12, 15,  6, 21, 24,  9, ...
  [4] 0, 4,  4, 12,  4, 20, 12, 28,  8, 36, ...
  [5] 0, 5, 10, 15, 20,  5, 30, 35, 40, 45, ...
  [6] 0, 6,  6,  6, 12, 30,  6, 42, 24, 18, ...
  [7] 0, 7, 14, 21, 28, 35, 42,  7, 56, 63, ...
  [8] 0, 8,  8, 24,  8, 40, 24, 56,  8, 72, ...
  [9] 0, 9, 18,  9, 36, 45, 18, 63, 72,  9, ...
.
Seen as a triangle T(n, k) = lcm(n - k, k).
  [0] 0;
  [1] 0, 0;
  [2] 0, 1,  0;
  [3] 0, 2,  2,  0;
  [4] 0, 3,  2,  3,  0;
  [5] 0, 4,  6,  6,  4,  0;
  [6] 0, 5,  4,  3,  4,  5, 0;
  [7] 0, 6, 10, 12, 12, 10, 6,  0;
  [8] 0, 7,  6, 15,  4, 15, 6,  7, 0;
  [9] 0, 8, 14,  6, 20, 20, 6, 14, 8, 0;
		

Crossrefs

Rows A000027, A109043, A109044, A109045, A109046, A109047, A109048, A109049, A109050, A109051, A109052, A109053, A006580 (row sums of triangle), A001477 (main diagonal, central terms).
Variants: A003990 is (1, 1) based, A051173 (T(n,k) = lcm(n,k)).

Programs

  • Maple
    T := (n, k) -> ilcm(n - k, k):
    for n from 0 to 9 do seq(T(n, k), k = 0..n) od;  # Peter Luschny, Mar 24 2025

Formula

lcm(n, k) = n*k / gcd(n, k) for (n, k) != (0, 0).

A070292 a(n) = lcm(12,n)/gcd(12,n).

Original entry on oeis.org

12, 6, 4, 3, 60, 2, 84, 6, 12, 30, 132, 1, 156, 42, 20, 12, 204, 6, 228, 15, 28, 66, 276, 2, 300, 78, 36, 21, 348, 10, 372, 24, 44, 102, 420, 3, 444, 114, 52, 30, 492, 14, 516, 33, 60, 138, 564, 4, 588, 150, 68, 39, 636, 18, 660, 42, 76, 174, 708, 5, 732, 186, 84, 48
Offset: 1

Views

Author

Amarnath Murthy, May 10 2002

Keywords

Crossrefs

Programs

  • PARI
    for(n=1,100,print1(lcm(12,n)/gcd(n,12),","))
    
  • PARI
    Vec(x*(12 + 6*x + 4*x^2 + 3*x^3 + 60*x^4 + 2*x^5 + 84*x^6 + 6*x^7 + 12*x^8 + 30*x^9 + 132*x^10 + x^11 + 132*x^12 + 30*x^13 + 12*x^14 + 6*x^15 + 84*x^16 + 2*x^17 + 60*x^18 + 3*x^19 + 4*x^20 + 6*x^21 + 12*x^22) / (x^24 - 2*x^12 + 1) + O(x^60)) \\ Colin Barker, Mar 05 2019
    
  • Python
    from math import gcd, lcm
    def a(n): return lcm(12, n)//gcd(12, n)
    print([a(n) for n in range(1, 65)]) # Michael S. Branicky, Dec 06 2021

Formula

a(n) = A109053(n)/A109015(n) = 12*n/A109015(n)^2. - R. J. Mathar, Feb 12 2019
a(n) = 2*a(n-12) - a(n-24). - R. J. Mathar, Feb 12 2019
G.f.: x*(12 + 6*x + 4*x^2 + 3*x^3 + 60*x^4 + 2*x^5 + 84*x^6 + 6*x^7 + 12*x^8 + 30*x^9 + 132*x^10 + x^11 + 132*x^12 + 30*x^13 + 12*x^14 + 6*x^15 + 84*x^16 + 2*x^17 + 60*x^18 + 3*x^19 + 4*x^20 + 6*x^21 + 12*x^22) / (x^24 - 2*x^12 + 1). - Colin Barker, Mar 05 2019
Sum_{k=1..n} a(k) ~ (703/288)*n^2. - Amiram Eldar, Oct 07 2023

Extensions

More terms from Benoit Cloitre, May 16 2002
Showing 1-3 of 3 results.