cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 26 results. Next

A026741 a(n) = n if n odd, n/2 if n even.

Original entry on oeis.org

0, 1, 1, 3, 2, 5, 3, 7, 4, 9, 5, 11, 6, 13, 7, 15, 8, 17, 9, 19, 10, 21, 11, 23, 12, 25, 13, 27, 14, 29, 15, 31, 16, 33, 17, 35, 18, 37, 19, 39, 20, 41, 21, 43, 22, 45, 23, 47, 24, 49, 25, 51, 26, 53, 27, 55, 28, 57, 29, 59, 30, 61, 31, 63, 32, 65, 33, 67, 34, 69, 35, 71, 36, 73, 37, 75, 38
Offset: 0

Views

Author

J. Carl Bellinger (carlb(AT)ctron.com)

Keywords

Comments

a(n) is the size of largest conjugacy class in D_2n, the dihedral group with 2n elements. - Sharon Sela (sharonsela(AT)hotmail.com), May 14 2002
a(n+1) is the composition length of the n-th symmetric power of the natural representation of a finite subgroup of SL(2,C) of type D_4 (quaternion group). - Paul Boddington, Oct 23 2003
For n > 1, a(n) is the greatest common divisor of all permutations of {0, 1, ..., n} treated as base n + 1 integers. - David Scambler, Nov 08 2006 (see the Mathematics Stack Exchange link below).
From Dimitrios Choussos (choussos(AT)yahoo.de), May 11 2009: (Start)
Sequence A075888 and the above sequence are fitting together.
First 2 entries of this sequence have to be taken out.
In some cases two three or more sequenced entries of this sequence have to be added together to get the next entry of A075888.
Example: Sequences begin with 1, 3, 2, 5, 3, 7, 4, 9 (4 + 9 = 13, the next entry in A075888).
But it works out well up to primes around 50000 (haven't tested higher ones).
As A075888 gives a very regular graph. There seems to be a regularity in the primes. (End)
Starting with 1 = triangle A115359 * [1, 2, 3, ...]. - Gary W. Adamson, Nov 27 2009
From Gary W. Adamson, Dec 11 2009: (Start)
Let M be an infinite lower triangular matrix with (1, 1, 1, 0, 0, 0, ...) in every column, shifted down twice. This sequence starting with 1 = M * (1, 2, 3, ...)
M =
1;
1, 0;
1, 1, 0;
0, 1, 0, 0;
0, 1, 1, 0, 0;
0, 0, 1, 0, 0, 0;
0, 0, 1, 1, 0, 0, 0;
...
A026741 = M * (1, 2, 3, ...); but A002487 = lim_{n->infinity} M^n, a left-shifted vector considered as a sequence. (End)
A particular case of sequence for which a(n+3) = (a(n+2) * a(n+1)+q)/a(n) for every n > n0. Here n0 = 1 and q = -1. - Richard Choulet, Mar 01 2010
For n >= 2, a(n+1) is the smallest m such that s_n(2*m*(n-1))/(n-1) is even, where s_b(c) is the sum of digits of c in base b. - Vladimir Shevelev, May 02 2011
A001477 and A005408 interleaved. - Omar E. Pol, Aug 22 2011
Numerator of n/((n-1)*(n-2)). - Michael B. Porter, Mar 18 2012
Number of odd terms of n-th row in the triangles A162610 and A209297. - Reinhard Zumkeller, Jan 19 2013
For n >= 3, a(n) is the periodic of integer of spiral length ratio of spiral that have (n-1) circle centers. See illustration in links. - Kival Ngaokrajang, Dec 28 2013
This is the sequence of Lehmer numbers u_n(sqrt(R), Q) with the parameters R = 4 and Q = 1. It is a strong divisibility sequence, that is, gcd(a(n), a(m)) = a(gcd(n, m)) for all natural numbers n and m. Cf. A005013 and A108412. - Peter Bala, Apr 18 2014
The sequence of convergents of the 2-periodic continued fraction [0; 1, -4, 1, -4, ...] = 1/(1 - 1/(4 - 1/(1 - 1/(4 - ...)))) = 2 begins [0/1, 1/1, 4/3, 3/2, 8/5, 5/3, 12/7, ...]. The present sequence is the sequence of denominators; the sequence of numerators of the continued fraction convergents [0, 1, 4, 3, 8, 5, 12, ...] is A022998, also a strong divisibility sequence. - Peter Bala, May 19 2014
For n >= 3, (a(n-2)/a(n))*Pi = vertex angle of a regular n-gon. See illustration in links. - Kival Ngaokrajang, Jul 17 2014
For n > 1, the numerator of the harmonic mean of the first n triangular numbers. - Colin Barker, Nov 13 2014
The difference sequence is a permutation of the integers. - Clark Kimberling, Apr 19 2015
From Timothy Hopper, Feb 26 2017: (Start)
Given the function a(n, p) = n/p if n mod p = 0, else n, then a possible formula is: a(n, p) = n*(1 + (p-1)*((n^(p-1)) mod p))/p, p prime, (n^(p-1)) mod p = 1, n not divisible by p. (Fermat's Little Theorem). Examples: p = 2; a(n), p = 3; A051176(n), p = 5; A060791(n), p = 7; A106608(n).
Conjecture: lcm(n, p) = p*a(n, p), gcd(n, p) = n/a(n, p). (End)
Let r(n) = (a(n+1) + 1)/a(n+1) if n mod 2 = 1, a(n+1)/(a(n+1) + 2) otherwise; then lim_{k->oo} 2^(k+2) * Product_{n=0..k} r(n)^(k-n) = Pi. - Dimitris Valianatos, Mar 22 2021
Number of integers k from 1 to n such that gcd(n,k) is odd. - Amiram Eldar, May 18 2025

Examples

			G.f. = x + x^2 + 3*x^3 + 2*x^4 + 5*x^5 + 3*x^6 + 7*x^7 + 4*x^8 + ...
		

References

  • David Wells, Prime Numbers: The Most Mysterious Figures in Math. Hoboken, New Jersey: John Wiley & Sons (2005), p. 53.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, 2nd Ed. Penguin (1997), p. 79.

Crossrefs

Signed version is in A030640. Partial sums give A001318.
Cf. A051176, A060819, A060791, A060789 for n / gcd(n, k) with k = 3..6. See also A106608 thru A106612 (k = 7 thru 11), A051724 (k = 12), A106614 thru A106621 (k = 13 thru 20).
Cf. A013942.
Cf. A227042 (first column). Cf. A005013 and A108412.

Programs

  • Haskell
    import Data.List (transpose)
    a026741 n = a026741_list !! n
    a026741_list = concat $ transpose [[0..], [1,3..]]
    -- Reinhard Zumkeller, Dec 12 2011
    
  • Magma
    [2*n/(3+(-1)^n): n in [0..70]]; // Vincenzo Librandi, Aug 14 2011
    
  • Maple
    A026741 := proc(n) if type(n,'odd') then n; else n/2; end if; end proc: seq(A026741(n), n=0..76); # R. J. Mathar, Jan 22 2011
  • Mathematica
    Numerator[Abs[Table[Det[DiagonalMatrix[Table[1/i^2 - 1, {i, 1, n - 1}]] + 1], {n, 20}]]] (* Alexander Adamchuk, Jun 02 2006 *)
    halfMax = 40; Riffle[Range[0, halfMax], Range[1, 2halfMax + 1, 2]] (* Harvey P. Dale, Mar 27 2011 *)
    a[ n_] := Numerator[n / 2]; (* Michael Somos, Jan 20 2017 *)
    Array[If[EvenQ[#],#/2,#]&,80,0] (* Harvey P. Dale, Jul 08 2023 *)
  • PARI
    a(n) = numerator(n/2) \\ Rick L. Shepherd, Sep 12 2007
    
  • Python
    def A026741(n): return n if n % 2 else n//2 # Chai Wah Wu, Apr 02 2021
  • Sage
    [lcm(n, 2) / 2 for n in range(77)] # Zerinvary Lajos, Jun 07 2009
    

Formula

G.f.: x*(1 + x + x^2)/(1-x^2)^2. - Len Smiley, Apr 30 2001
a(n) = 2*a(n-2) - a*(n-4) for n >= 4.
a(n) = n * 2^((n mod 2) - 1). - Reinhard Zumkeller, Oct 16 2001
a(n) = 2*n/(3 + (-1)^n). - Benoit Cloitre, Mar 24 2002
Multiplicative with a(2^e) = 2^(e-1) and a(p^e) = p^e, p > 2. - Vladeta Jovovic, Apr 05 2002
a(n) = n / gcd(n, 2). a(n)/A045896(n) = n/((n+1)*(n+2)).
For n > 0, a(n) = denominator of Sum_{i=1..n-1} 2/(i*(i+1)), numerator=A022998. - Reinhard Zumkeller, Apr 21 2012, Jul 25 2002 [thanks to Phil Carmody who noticed an error]
For n > 1, a(n) = GCD of the n-th and (n-1)-th triangular numbers (A000217). - Ross La Haye, Sep 13 2003
Euler transform of finite sequence [1, 2, -1]. - Michael Somos, Jun 15 2005
G.f.: x * (1 - x^3) / ((1 - x) * (1 - x^2)^2) = Sum_{k>0} k * (x^k - x^(2*k)). - Michael Somos, Jun 15 2005
a(n+3) + a(n+2) = 3 + a(n+1) + a(n). a(n+3) * a(n) = - 1 + a(n+2) * a(n+1). a(n) = -a(-n) for all n in Z. - Michael Somos, Jun 15 2005
For n > 1, a(n) is the numerator of the average of 1, 2, ..., n - 1; i.e., numerator of A000217(n-1)/(n-1), with corresponding denominators [1, 2, 1, 2, ...] (A000034). - Rick L. Shepherd, Jun 05 2006
Equals A126988 * (1, -1, 0, 0, 0, ...). - Gary W. Adamson, Apr 17 2007
For n >= 1, a(n) = gcd(n,A000217(n)). - Rick L. Shepherd, Sep 12 2007
a(n) = numerator(n/(2*n-2)) for n >= 2; A022998(n-1) = denominator(n/(2*n-2)) for n >= 2. - Johannes W. Meijer, Jun 18 2009
a(n) = A167192(n+2, 2). - Reinhard Zumkeller, Oct 30 2009
a(n) = A106619(n) * A109012(n). - Paul Curtz, Apr 04 2011
From R. J. Mathar, Apr 18 2011: (Start)
a(n) = A109043(n)/2.
Dirichlet g.f.: zeta(s-1)*(1 - 1/2^s). (End)
a(n) = A001318(n) - A001318(n-1) for n > 0. - Jonathan Sondow, Jan 28 2013
a((2*n+1)*2^p - 1) = 2^p - 1 + n*A151821(p+1), p >= 0 and n >= 0. - Johannes W. Meijer, Feb 03 2013
a(n+1) = denominator(H(n, 1)), n >= 0, with H(n, 1) = 2*n/(n+1) the harmonic mean of n and 1. a(n+1) = A227042(n, 1). See the formula a(n) = n/gcd(n, 2) given above. - Wolfdieter Lang, Jul 04 2013
a(n) = numerator(n/2). - Wesley Ivan Hurt, Oct 02 2013
a(n) = numerator(1 - 2/(n+2)), n >= 0; a(n) = denominator(1 - 2/n), n >= 1. - Kival Ngaokrajang, Jul 17 2014
a(n) = Sum_{i = floor(n/2)..floor((n+1)/2)} i. - Wesley Ivan Hurt, Apr 27 2016
Euler transform of length 3 sequence [1, 2, -1]. - Michael Somos, Jan 20 2017
G.f.: x / (1 - x / (1 - 2*x / (1 + 7*x / (2 - 9*x / (7 - 4*x / (3 - 7*x / (2 + 3*x))))))). - Michael Somos, Jan 20 2017
From Peter Bala, Mar 24 2019: (Start)
a(n) = Sum_{d|n, n/d odd} phi(d), where phi(n) is the Euler totient function A000010.
O.g.f.: Sum_{n >= 1} phi(n)*x^n/(1 - x^(2*n)). (End)
a(n) = A256095(2*n,n). - Alois P. Heinz, Jan 21 2020
E.g.f.: x*(2*cosh(x) + sinh(x))/2. - Stefano Spezia, Apr 28 2023
From Ctibor O. Zizka, Oct 05 2023: (Start)
For k >= 0, a(k) = gcd(k + 1, k*(k + 1)/2).
If (k mod 4) = 0 or 2 then a(k) = (k + 1).
If (k mod 4) = 1 or 3 then a(k) = (k + 1)/2. (End)
Sum_{n=1..oo} 1/a(n)^2 = 7*Pi^2/24. - Stefano Spezia, Dec 02 2023
a(n)*a(n+1) = A000217(n). - Rémy Sigrist, Mar 19 2025

Extensions

Better description from Jud McCranie
Edited by Ralf Stephan, Jun 04 2003

A060819 a(n) = n / gcd(n,4).

Original entry on oeis.org

1, 1, 3, 1, 5, 3, 7, 2, 9, 5, 11, 3, 13, 7, 15, 4, 17, 9, 19, 5, 21, 11, 23, 6, 25, 13, 27, 7, 29, 15, 31, 8, 33, 17, 35, 9, 37, 19, 39, 10, 41, 21, 43, 11, 45, 23, 47, 12, 49, 25, 51, 13, 53, 27, 55, 14, 57, 29, 59, 15, 61, 31, 63, 16, 65, 33, 67, 17, 69, 35, 71, 18, 73, 37, 75, 19
Offset: 1

Views

Author

Len Smiley, Apr 30 2001

Keywords

Comments

From Peter Bala, Feb 19 2019: (Start)
We make some general remarks about the sequence a(n) = numerator(n/(n + k)) = n/gcd(n,k) for k a fixed positive integer. The present sequence is the case k = 4. Several other cases are listed in the Crossrefs. In addition to being multiplicative these sequences are also strong divisibility sequences, that is, gcd(a(n),a(m)) = a(gcd(n, m)) for n, m >= 1. In particular, it follows that a(n) is a divisibility sequence: if n divides m then a(n) divides a(m).
By the multiplicativeness and strong divisibility property of the sequence a(n) it follows that if gcd(n, m) = 1 then a(a(n)*a(m) ) = a(a(n)) * a(a(m)), a(a(a(n))*a(a(m)) ) = a(a(a(n))) * a(a(a(m))) and so on.
The sequence a(n) has the rational generating function Sum_{d divides k} f(d)*x^d/(1 - x^d)^2, where f(n) is the Dirichlet inverse of the Euler totient function A000010. f(n) is a multiplicative function defined on prime powers p^k by f(p^k) = 1 - p. See A023900. Cf. A181318. (End)

Examples

			From _Peter Bala_, Feb 21 2019: (Start)
Sum_{n >= 1} n*a(n)*x^n = G(x) - 2*G(x^2) - 4*G(x^4), where G(x) = x*(1 + x)/(1 - x)^3.
Sum_{n >= 1} (1/n)*a(n)*x^n = H(x) - (1/2)*H(x^2) - (1/4)*H(x^4), where H(x) = x/(1 - x).
Sum_{n >= 1} (1/n^2)*a(n)*x^n = L(x) - (1/2^2)*L(x^2) - (1/4^2)*L(x^4), where L(x) = Log(1/(1 - x)).
Sum_{n >= 1} (1/a(n))*x^n = L(x) + (1/2)*L(x^2) + (1/2)*L(x^4). (End)
		

Crossrefs

Cf. A026741, A051176, A060791, A060789. Cf. Other sequences given by the formula numerator(n/(n + k)): A106608 thru A106612 (k = 7 thru 11), A051724 (k = 12), A106614 thru A106621 (k = 13 thru 20).

Programs

Formula

G.f.: x*(1 +x +3*x^2 +x^3 +3*x^4 +x^5 +x^6)/(1 - x^4)^2.
a(n) = 2*a(n-4) - a(n-8).
a(n) = (n/16)*(11 - 5*(-1)^n - i^n - (-i)^n). - Ralf Stephan, Mar 15 2003
a(2*n+1) = a(4*n+2) = 2*n+1, a(4*n+4) = n+1. - Ralf Stephan, Jun 10 2005
Multiplicative with a(2^e) = 2^max(0, e-2), a(p^e) = p^e, p >= 3. - Mitch Harris, Jun 29 2005
a(n) = A167192(n+4,4). - Reinhard Zumkeller, Oct 30 2009
From R. J. Mathar, Apr 18 2011: (Start)
a(n) = A109045(n)/4.
Dirichlet g.f.: zeta(s-1)*(1-1/2^s-1/2^(2s)). (End)
a(n+4) - a(n) = A176895(n). - Paul Curtz, Apr 05 2011
a(n) = numerator(Sum_{k=1..n} 1/((k+1)*(k+2))). This summation has a closed form of 1/2 - 1/(n+2) and denominator of A145979(n). - Gary Detlefs, Sep 16 2011
a((2*n-1)*2^p) = ceiling(2^(p-2))*(2*n-1), p >= 0 and n >= 1. - Johannes W. Meijer, Feb 06 2013
a(n) = n / A109008(n). - Reinhard Zumkeller, Nov 25 2013
a(n) = denominator((2n-4)/n). - Wesley Ivan Hurt, Dec 22 2016
From Peter Bala, Feb 21 2019: (Start)
O.g.f.: Sum_{n >= 0} a(n)*x^n = F(x) - F(x^2) - F(x^4), where F(x) = x/(1 - x)^2.
More generally, Sum_{n >= 0} (a(n)^m)*x^n = F(m,x) + (1 - 2^m)*( F(m,x^2) + F(m,x^4) ), where F(m,x) = A(m,x)/(1 - x)^(m+1) with A(m,x) the m_th Eulerian polynomial: A(1,x) = x, A(2,x) = x*(1 + x), A(3,x) = x*(1 + 4*x + x^2) - see A008292.
Repeatedly applying the Euler operator x*d/dx or its inverse operator to the o.g.f. for the sequence a(n) produces generating functions for the sequences ((n^m)*a(n))n>=1 for m in Z. Some examples are given below.
(End)
Sum_{k=1..n} a(k) ~ (11/32) * n^2. - Amiram Eldar, Nov 25 2022
E.g.f.: x*(8*cosh(x) + sin(x) + 3*sinh(x))/8. - Stefano Spezia, Dec 02 2023

A051176 If n mod 3 = 0 then n/3 else n.

Original entry on oeis.org

0, 1, 2, 1, 4, 5, 2, 7, 8, 3, 10, 11, 4, 13, 14, 5, 16, 17, 6, 19, 20, 7, 22, 23, 8, 25, 26, 9, 28, 29, 10, 31, 32, 11, 34, 35, 12, 37, 38, 13, 40, 41, 14, 43, 44, 15, 46, 47, 16, 49, 50, 17, 52, 53, 18, 55, 56, 19, 58, 59, 20, 61, 62, 21, 64, 65, 22, 67
Offset: 0

Views

Author

Keywords

Comments

Numerator of n/3. - Wesley Ivan Hurt, Jul 18 2014

Examples

			G.f. = x + 2*x^2 + x^3 + 4*x^4 + 5*x^5 + 2*x^6 + 7*x^7 + 8*x^8 + 3*x^9 + ...
		

Crossrefs

Cf. A026741, A051176, A060819, A060791, A060789 for n / GCD(n,k) for k=2..6. See also A106608 thru A106612 (k = 7 thru 11), A051724 (k = 12), A106614 thru A106621 (k = 13 thru 20).

Programs

Formula

a(n) = n / gcd(n,3).
G.f.: x*(1+2*x+x^2+2*x^3+x^4)/(1-x^3)^2 = x*(1+2*x+x^2+2*x^3+x^4) / ( (x-1)^2*(1+x+x^2)^2 ). - Len Smiley, Apr 30 2001
Multiplicative with a(3^e) = 3^(e-1), a(p^e) = p^e otherwise. - Mitch Harris, Jun 09 2005
a(n) = A167192(n+3, 3). - Reinhard Zumkeller, Oct 30 2009
From R. J. Mathar, Apr 18 2011: (Start)
a(n) = A109044(n)/3.
Dirichlet g.f.: zeta(s-1)*(1-2/3^s). (End)
a(n) = n/3 * (1 + 2*A011655(n)) = n*A144437(n)/3. - Timothy Hopper, Feb 23 2017
G.f.: x /(1 - x)^2 - 2 * x^3/(1 - x^3)^2. - Michael Somos, Mar 05 2017
a(n) = a(-n) for all n in Z. - Michael Somos, Mar 05 2017
a(n) = n*(7 - 4*cos((2*Pi*n)/3)) / 9. - Colin Barker, Mar 05 2017
Sum_{k=1..n} a(k) ~ (7/18) * n^2. - Amiram Eldar, Nov 25 2022
Sum_{n>=1} (-1)^(n+1)/a(n) = 5*log(2)/3. - Amiram Eldar, Sep 08 2023

A060789 a(n) = n / (gcd(n,2) * gcd(n,3)).

Original entry on oeis.org

1, 1, 1, 2, 5, 1, 7, 4, 3, 5, 11, 2, 13, 7, 5, 8, 17, 3, 19, 10, 7, 11, 23, 4, 25, 13, 9, 14, 29, 5, 31, 16, 11, 17, 35, 6, 37, 19, 13, 20, 41, 7, 43, 22, 15, 23, 47, 8, 49, 25, 17, 26, 53, 9, 55, 28, 19, 29, 59, 10, 61, 31, 21, 32, 65, 11, 67, 34, 23, 35, 71, 12, 73, 37, 25, 38, 77
Offset: 1

Views

Author

Len Smiley, Apr 26 2001

Keywords

Comments

a(n+2) is absolute value of numerator of determinant of n X n matrix with M(i,j) = 2/(i(i+1)) if i=j otherwise 1. - Alexander Adamchuk, May 19 2006
Numerator of n/(n+6). - Gerry Martens, Aug 06 2015
In addition to being multiplicative, this sequence is also a strong divisibility sequence, that is, gcd(a(n),a(m)) = a(gcd(n, m)) for n, m >= 1. In particular, it follows that a(n) is a divisibility sequence: if n divides m then a(n) divides a(m). - Peter Bala, Feb 20 2019
Connected to the Diophantine equation x^2 + (x + 1)^2 + … + (x + k)^2 = C, C an integer, x >= 0, k >= 0. Rewritten it is (k + 1)*x^2 + k*(k+1)*x + k*(k + 1)*(2*k + 1)/6 = C. The existence of its solutions depends on gcd(k + 1, k*(k + 1), k*(k + 1)*(2*k + 1)/6). - Ctibor O. Zizka, Oct 04 2023

Crossrefs

Cf. other sequences given by the formula n/gcd(n,k) = numerator(n/(n + k)): A026741 (k = 2), A051176 (k = 3), A060819 (k = 4), A060791 (k = 5), A106608 thru A106612 (k = 7 thru 11), A051724 (k = 12), A106614 thru A106621 (k = 13 thru 20).

Programs

  • GAP
    List([1..80],n->n/(Gcd(n,2)*Gcd(n,3))); # Muniru A Asiru, Feb 20 2019
  • Magma
    [n/(Gcd(n,2)*Gcd(n,3)) : n in [1..100]]; // Wesley Ivan Hurt, Aug 06 2015
    
  • Magma
    I:=[1,1,1,2,5,1,7,4,3,5,11,2]; [n le 12 select I[n] else 2*Self(n-6)-Self(n-12): n in [1..80]]; // Vincenzo Librandi, Aug 07 2015
    
  • Maple
    a := proc(n): if n = 1 then 1 else denom((4*n-6)/n) fi: end: seq(a(n), n=1..77); # Johannes W. Meijer, Dec 19 2012
  • Mathematica
    Numerator[Table[(-1)^(n+1) Det[ DiagonalMatrix[ Table[ 2/(i(i+1)) - 1, {i, 1, n-2} ] ] + 1 ], {n, 30} ]] (* Alexander Adamchuk, May 19 2006 *)
    Table[Numerator[(n+3)/(n+2)/(n+1)/n],{n,60}] (* Vladimir Joseph Stephan Orlovsky, Nov 17 2009 *)
    Table[n/(GCD[n, 2] GCD[n, 3]), {n, 100}] (* Wesley Ivan Hurt, Aug 06 2015 *)
    LinearRecurrence[{0,0,0,0,0,2,0,0,0,0,0,-1}, {1,1,1,2,5,1,7,4,3,5,11,2}, 80] (* Vincenzo Librandi, Aug 07 2015 *)
  • PARI
    a(n) = { n / (gcd(n, 2) * gcd(n, 3)) } \\ Harry J. Smith, Jul 11 2009
    
  • Sage
    [lcm(n,6)/6 for n in range(1, 78)] # Zerinvary Lajos, Jun 07 2009
    

Formula

G.f.: x*(1 + x + x^2 + 2*x^3 + 5*x^4 + x^5 + 5*x^6 + 2*x^7 + x^8 + x^9 + x^10)/(1 - x^6)^2.
Multiplicative with a(2^e)=2^(e-1), a(3^e)=3^(e-1), a(p^e)=p^e, p>3. - Vladeta Jovovic, Sep 09 2004
a(n) = Numerator[(-1)^(n+1)*Det[DiagonalMatrix[Table[2/(i(i+1))-1, {i,1,n-2}]]+1]], n>2. - Alexander Adamchuk, May 19 2006
a(n) divides n. a(6k) = k for integer k>0. a(p^k) = p^k for prime p>3 and integer k>0. - Alexander Adamchuk, Sep 20 2006
From R. J. Mathar, Apr 18 2011: (Start)
a(n) = A109047(n)/6.
Dirichlet g.f. zeta(s-1)*(1-1/2^s-2/3^s+2/6^s). (End)
a(n) = denominator((4*n-6)/n), n >= 2, with a(1) = 1. - Johannes W. Meijer, Dec 19 2012
a((2*n-1)*2^p) = A011782(p)*A146535(n), p >= 0. - Johannes W. Meijer, Feb 06 2013
a(n) = 2*a(n-6) - a(n-12) for n >= 12. - Robert Israel, Aug 06 2015
a(n) = gcd((n-1)*n*(n+1)/6, n). - Lechoslaw Ratajczak, Feb 16 2017
From Peter Bala, Feb 13 2019: (Start)
a(n) = n/gcd(n,n + 6) = n/gcd(n,6).
a(n) = n/b(n), where b(n) is the purely periodic sequence [1,2,3,2,1,6,...] with period 6.
a(n) is a quasi-polynomial in n: a(6*n+1) = 6*n + 1; a(6*n+2) = 3*n + 1; a(6*n+3) = 2*n + 1; a(6*n+4) = 3*n + 2; a(6*n+5) = 6*n + 5; a(6*n) = n.
a(n) = numerator(n/(n + 6)); a(n) = denominator((n + 6)/n).
(End)
Sum_{k=1..n} a(k) ~ 7*n^2/24. - Vaclav Kotesovec, Aug 09 2022
From Ctibor O. Zizka, Oct 04 2023: (Start)
For k >=0, a(k) = gcd(k + 1, k*(k + 1), k*(k + 1)*(2*k + 1)/6).
If (k mod 6) = 0 or 4 then a(k) = (k + 1).
If (k mod 6) = 1 or 3 then a(k) = (k + 1)/2.
If (k mod 6) = 2 then a(k) = (k + 1)/3.
If (k mod 6) = 5 then a(k) = (k + 1)/6. (End)

A106612 a(n) = numerator(n/(n+11)).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 2, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 3, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 4, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 5, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 6, 67, 68, 69, 70, 71, 72, 73, 74, 75
Offset: 0

Views

Author

N. J. A. Sloane, May 15 2005

Keywords

Comments

In general, the numerators of n/(n+p) for prime p and n >= 0, form a sequence with the g.f.: x/(1-x)^2 - (p-1)*x^p/(1-x^p)^2. - Paul D. Hanna, Jul 27 2005
a(n) <> n iff n = 11 * k, in this case, a(n) = k. - Bernard Schott, Feb 19 2019

Crossrefs

Cf. A109052, A137564 (differs, e.g., for n=100).
Cf. Sequences given by the formula numerator(n/(n + k)): A026741 (k = 2), A051176 (k = 3), A060819 (k = 4), A060791 (k = 5), A060789 (k = 6), A106608 thru A106611 (k = 7 thru 10), A051724 (k = 12), A106614 thru A106621 (k = 13 thru 20).

Programs

  • GAP
    List([0..80],n->NumeratorRat(n/(n+11))); # Muniru A Asiru, Feb 19 2019
  • Magma
    [Numerator(n/(n+11)): n in [0..100]]; // Vincenzo Librandi, Apr 18 2011
    
  • Maple
    seq(numer(n/(n+11)),n=0..80); # Muniru A Asiru, Feb 19 2019
  • Mathematica
    f[n_]:=Numerator[n/(n+11)];Array[f,100,0] (* Vladimir Joseph Stephan Orlovsky, Feb 17 2011 *)
    LinearRecurrence[{0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,-1},{0,1,2,3,4,5,6,7,8,9,10,1,12,13,14,15,16,17,18,19,20,21},80] (* Harvey P. Dale, Jul 05 2021 *)
  • PARI
    vector(100, n, n--; numerator(n/(n+11))) \\ G. C. Greubel, Feb 19 2019
    
  • Sage
    [lcm(n,11)/11 for n in range(0, 54)] # Zerinvary Lajos, Jun 09 2009
    

Formula

G.f.: x/(1-x)^2 - 10*x^11/(1-x^11)^2. - Paul D. Hanna, Jul 27 2005
a(n) = lcm(n,11)/11.
From R. J. Mathar, Apr 18 2011: (Start)
a(n) = A109052(n)/11.
Dirichlet g.f.: zeta(s-1)*(1-10/11^s). (End)
a(n) = 2*a(n-11) - a(n-22). - G. C. Greubel, Feb 19 2019
From Amiram Eldar, Nov 25 2022: (Start)
Multiplicative with a(11^e) = 11^(e-1), and a(p^e) = p^e if p != 11.
Sum_{k=1..n} a(k) ~ (111/242) * n^2. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = 21*log(2)/11. - Amiram Eldar, Sep 08 2023

A060791 a(n) = n / gcd(n,5).

Original entry on oeis.org

1, 2, 3, 4, 1, 6, 7, 8, 9, 2, 11, 12, 13, 14, 3, 16, 17, 18, 19, 4, 21, 22, 23, 24, 5, 26, 27, 28, 29, 6, 31, 32, 33, 34, 7, 36, 37, 38, 39, 8, 41, 42, 43, 44, 9, 46, 47, 48, 49, 10, 51, 52, 53, 54, 11, 56, 57, 58, 59, 12, 61, 62, 63, 64, 13, 66, 67, 68, 69
Offset: 1

Views

Author

Len Smiley, Apr 26 2001

Keywords

Comments

As well as being a multiplicative sequence, a(n) is also strong divisibility sequence, that is, gcd(a(n),a(m)) = a(gcd(n,m)) for n, m >= 1. In particular, a(n) is a divisibility sequence: if n divides m then a(n) divides a(m). Peter Bala, Feb 20 2019

Crossrefs

Cf. Sequences given by the formula n/gcd(n,k) = numerator(n/(n + k)): A026741 (k = 2), A051176 (k = 3), A060819 (k = 4), A060789 (k = 6), A106608 thru A106612 (k = 7 thru 11), A051724 (k = 12), A106614 thru A106621 (k = 13 thru 20).
Cf. A109046.

Programs

Formula

G.f.: x*(1 + 2*x + 3*x^2 + 4*x^3 + x^4 + 4*x^5 + 3*x^6 + 2*x^7 + x^8)/(1 - x^5)^2.
a(n) = n/5 if 5|n, otherwise a(n) = n.
From R. J. Mathar, Apr 18 2011: (Start)
a(n) = A109046(n)/5.
Dirichlet g.f.: zeta(s-1)*(1-4/5^s). (End)
G.f.: x*(x^4 + x^3 - x^2 + x + 1)*(x^4 + x^3 + 3*x^2 + x + 1)/((x - 1)^2*(x^4 + x^3 + x^2 + x + 1)^2). - R. J. Mathar, Oct 31 2015
From Peter Bala, Feb 20 2019: (Start)
a(n) = numerator(n/(n + 5)).
If gcd(n, m) = 1 then a(a(n)*a(m)) = a(a(n)) * a(a(m)), a(a(a(n))*a(a(m))) = a(a(a(n))) * a(a(a(m))) and so on.
G.f.: x/(1 - x)^2 - 4*x^5/(1 - x^5)^2. (End)
Sum_{k=1..n} a(k) ~ (21/50) * n^2. - Amiram Eldar, Nov 25 2022
Sum_{n>=1} (-1)^(n+1)/a(n) = 9*log(2)/5. - Amiram Eldar, Sep 08 2023

Extensions

Extended (using terms from b-file) by Michel Marcus, Feb 08 2014

A106608 a(n) = numerator of n/(n+7).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 1, 8, 9, 10, 11, 12, 13, 2, 15, 16, 17, 18, 19, 20, 3, 22, 23, 24, 25, 26, 27, 4, 29, 30, 31, 32, 33, 34, 5, 36, 37, 38, 39, 40, 41, 6, 43, 44, 45, 46, 47, 48, 7, 50, 51, 52, 53, 54, 55, 8, 57, 58, 59, 60, 61, 62, 9, 64, 65, 66, 67, 68, 69, 10, 71, 72, 73, 74, 75, 76
Offset: 0

Views

Author

N. J. A. Sloane, May 15 2005

Keywords

Comments

In general, the numerators of n/(n+p) for prime p and n >= 0 form a sequence with the g.f.: x/(1-x)^2 - (p-1)*x^p/(1-x^p)^2. - Paul D. Hanna, Jul 27 2005
Generalizing the above comment of Hanna, the numerators of n/(n + k) for a fixed positive integer k and n >= 0 form a sequence with the g.f.: Sum_{d divides k} f(d)*x^d/(1 - x^d)^2, where f(n) is the Dirichlet inverse of the Euler totient function A000010. f(n) is a multiplicative function defined on prime powers p^k by f(p^k) = 1 - p. See A023900. - Peter Bala, Feb 17 2019
a(n) <> n iff n = 7 * k, in this case, a(n) = k. - Bernard Schott, Feb 19 2019

Crossrefs

Sequences given by the formula numerator(n/(n + k)): A026741 (k = 2), A051176 (k = 3), A060819 (k = 4), A060791 (k = 5), A060789 (k = 6), A106609 thru A106612 (k = 8 thru 11), A051724 (k = 12), A106614 thru A106621 (k = 13 thru 20).

Programs

Formula

G.f.: x/(1-x)^2 - 6*x^7/(1-x^7)^2. - Paul D. Hanna, Jul 27 2005
From R. J. Mathar, Apr 18 2011: (Start)
a(n) = A109048(n)/7.
Dirichlet g.f.: zeta(s-1)*(1-6/7^s).
Multiplicative with a(p^e) = p^e if p<>7, a(7^e) = 7^(e-1) if e > 0. (End)
Sum_{k=1..n} a(k) ~ (43/98) * n^2. - Amiram Eldar, Nov 25 2022
Sum_{n>=1} (-1)^(n+1)/a(n) = 13*log(2)/7. - Amiram Eldar, Sep 08 2023

A106614 a(n) = numerator of n/(n+13).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 2, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 3, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 4, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 5, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75
Offset: 0

Views

Author

N. J. A. Sloane, May 15 2005

Keywords

Comments

In general, the numerators of n/(n+p) for prime p and n >= 0, form a sequence with the g.f.: x/(1-x)^2 - (p-1)*x^p/(1-x^p)^2. - Paul D. Hanna, Jul 27 2005
a(n) <> n iff n = 13 * k, in this case, a(n) = k. - Bernard Schott, Feb 19 2019

Crossrefs

Cf. Sequences given by the formula numerator(n/(n + k)): A026741 (k = 2), A051176 (k = 3), A060819 (k = 4), A060791 (k = 5), A060789 (k = 6), A106608 thru A106612 (k = 7 thru 11), A051724 (k = 12), A106615 thru A106621 (k = 14 thru 20).

Programs

Formula

G.f.: x/(1-x)^2 - 12*x^13/(1-x^13)^2. - Paul D. Hanna, Jul 27 2005
Dirichlet g.f.: zeta(s-1)*(1-12/13^s). - R. J. Mathar, Apr 18 2011
a(n) = 2*a(n-13) - a(n-26). - G. C. Greubel, Feb 19 2019
From Amiram Eldar, Nov 25 2022: (Start)
Multiplicative with a(13^e) = 13^(e-1), and a(p^e) = p^e if p != 13.
Sum_{k=1..n} a(k) ~ (157/338) * n^2. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = 25*log(2)/13. - Amiram Eldar, Sep 08 2023

A106621 a(n) = numerator of n/(n+20).

Original entry on oeis.org

0, 1, 1, 3, 1, 1, 3, 7, 2, 9, 1, 11, 3, 13, 7, 3, 4, 17, 9, 19, 1, 21, 11, 23, 6, 5, 13, 27, 7, 29, 3, 31, 8, 33, 17, 7, 9, 37, 19, 39, 2, 41, 21, 43, 11, 9, 23, 47, 12, 49, 5, 51, 13, 53, 27, 11, 14, 57, 29, 59, 3, 61, 31, 63, 16, 13, 33, 67, 17, 69, 7, 71, 18, 73, 37, 15, 19, 77, 39, 79
Offset: 0

Views

Author

N. J. A. Sloane, May 15 2005

Keywords

Comments

Contains as subsequences A026741, A017281, A017305, A005408, A017353, and A017377. - Luce ETIENNE, Nov 04 2018
Multiplicative and also a strong divisibility sequence: gcd(a(n),a(m)) = a(gcd(n,m)) for n, m >= 1. - Peter Bala, Feb 24 2019

Crossrefs

Cf. Sequences given by the formula numerator(n/(n + k)): A026741 (k = 2), A051176 (k = 3), A060819 (k = 4), A060791 (k = 5), A060789 (k = 6), A106608 thru A106612 (k = 7 thru 11), A051724 (k = 12), A106614 thru A106620 (k = 13 thru 19).

Programs

Formula

a(n) = lcm(20, n)/20. - Zerinvary Lajos, Jun 12 2009
a(n) = n/gcd(n, 20). - Andrew Howroyd, Jul 25 2018
From Luce ETIENNE, Nov 04 2018: (Start)
a(n) = 9*a(n-20) - 36*a(n-40) + 84*a(n-60) - 126*a(n-80) + 126*a(n-100) - 84*a(n-120) + 36*a(n-140) - 9*a(n-160) + a(n-180).
a(n) = (5*(119*m^9 - 4923*m^8 + 86250*m^7 - 832230*m^6 + 4807887*m^5 - 16882299*m^4 + 34770400*m^3 - 37855620m^2 + 16581744*m + 54432)*floor(n/10) + 72*m*(3*m^8 - 120*m^7 + 2030*m^6 - 18900*m^5 + 105329*m^4 - 356580*m^3 + 706220*m^2 - 733200*m + 300258) + ((19*m^9 - 855*m^8 + 15810*m^7 - 154350*m^6 + 849387*m^5 - 2597175*m^4 + 4037840*m^3 - 2600100*m^2 + 540144*m - 90720)*floor(n/10) - 72*m*(m^7 - 35*m^6 + 490*m^5 - 3500*m^4 + 13489*m^3 - 27335*m^2 + 26340*m - 9450))*(-1)^floor(n/10))/362880 where m = (n mod 10). (End)
From Peter Bala, Feb 24 2019: (Start)
a(n) = n/gcd(n,20) is a quasi-polynomial in n since gcd(n,20) is a purely periodic sequence of period 20.
O.g.f.: F(x) - F(x^2) - F(x^4) - 4*F(x^5) + 4*F(x^10) + 4*F(x^20), where F(x) = x/(1 - x)^2.
O.g.f. for reciprocals: Sum_{n >= 1} x^n/a(n) = Sum_{d divides 20} (phi(d)/d) * log(1/(1 - x^d)) = log(1/(1 - x)) + (1/2)*log(1/(1 - x^2)) + (2/4)*log(1/(1 - x^4)) + (4/5)*log(1/(1 - x^5)) + (4/10)*log(1/(1 - x^10)) + (8/20)*log(1/(1 - x^20)), where phi(n) denotes the Euler totient function A000010. (End)
From Amiram Eldar, Nov 25 2022: (Start)
Multiplicative with a(2^e) = 2^max(0, e-2), a(5^e) = 5^max(0,e-1), and a(p^e) = p^e otherwise.
Dirichlet g.f.: zeta(s-1)*(1 - 1/2^s - 1/4^s - 4/5^s + 4/10^s + 4/20^s).
Sum_{k=1..n} a(k) ~ (231/800) * n^2. (End)

Extensions

Keyword:mult added by Andrew Howroyd, Jul 25 2018

A106609 Numerator of n/(n+8).

Original entry on oeis.org

0, 1, 1, 3, 1, 5, 3, 7, 1, 9, 5, 11, 3, 13, 7, 15, 2, 17, 9, 19, 5, 21, 11, 23, 3, 25, 13, 27, 7, 29, 15, 31, 4, 33, 17, 35, 9, 37, 19, 39, 5, 41, 21, 43, 11, 45, 23, 47, 6, 49, 25, 51, 13, 53, 27, 55, 7, 57, 29, 59, 15, 61, 31, 63, 8, 65, 33, 67, 17, 69, 35, 71, 9, 73, 37, 75, 19, 77, 39, 79
Offset: 0

Views

Author

N. J. A. Sloane, May 15 2005

Keywords

Comments

The graph of this sequence is made up of four linear functions: a(n_odd)=n, a(n=2+4i)=n/2, a(4+8i)=n/4, a(8i)=n/8. - Zak Seidov, Oct 30 2006. [In general, f(n) = numerator of n/(n+m) consists of linear functions n/d_i, where d_i are divisors of m (including 1 and m).]
a(n+2), n>=0, is the denominator of the harmonic mean H(n,2) = 4*n/(n+2). a(n+2) = (n+2)/gcd(n+2,8). a(n+5) = A227042(n+2, 2), n >= 0. - Wolfdieter Lang, Jul 04 2013
The sequence p(n) = a(n-4), n>=1, with a(-3) = a(3) = 3, a(-2) = a(2) = 1 and a(-1) = a(1) = 1, appears in the problem of writing 2*sin(2*Pi/n) as an integer in the algebraic number field Q(rho(q(n))), where rho(k) = 2*cos(Pi/k) and q(n) = A225975(n). One has 2*sin(2*Pi/n) = R(p(n), x) modulo C(q(n), x), with x = rho(q(n)) and the integer polynomials R and C given in A127672 and A187360, respectively. See a comment on A225975. - Wolfdieter Lang, Dec 04 2013
A204455(n) divides a(n) for n>=1. - Alexander R. Povolotsky, Apr 06 2015
A multiplicative sequence. Also, a(n) is a strong divisibility sequence, that is, gcd(a(n),a(m)) = a(gcd(n,m)) for n >= 1, m >= 1. In particular, a(n) is a divisibility sequence: if n divides m then a(n) divides a(m). - Peter Bala, Feb 20 2019

Crossrefs

Cf. A109049, A204455, A225975, A227042 (second column, starting with a(5)).
Cf. Sequences given by the formula numerator(n/(n + k)): A026741 (k = 2), A051176 (k = 3), A060819 (k = 4), A060791 (k = 5), A060789 (k = 6), A106608 thru A106612 (k = 7 thru 11), A051724 (k = 12), A106614 thru A106621 (k = 13 thru 20).

Programs

  • GAP
    List([0..80],n->NumeratorRat(n/(n+8))); # Muniru A Asiru, Feb 19 2019
  • Magma
    [Numerator(n/(n+8)): n in [0..100]]; // Vincenzo Librandi, Apr 18 2011
    
  • Maple
    a := n -> iquo(n, [8, 1, 2, 1, 4, 1, 2, 1][1 + modp(n, 8)]):
    seq(a(n), n=0..79); # using Wolfdieter Lang's formula, Peter Luschny, Feb 22 2019
  • Mathematica
    f[n_]:=Numerator[n/(n+8)];Array[f,100,0] (* Vladimir Joseph Stephan Orlovsky, Feb 16 2011 *)
    LinearRecurrence[{0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,-1},{0,1,1,3,1,5,3,7,1,9,5,11,3,13,7,15},100] (* Harvey P. Dale, Sep 27 2019 *)
  • PARI
    vector(100, n, n--; numerator(n/(n+8))) \\ G. C. Greubel, Feb 19 2019
    
  • Sage
    [lcm(n,8)/8 for n in range(0, 100)] # Zerinvary Lajos, Jun 09 2009
    

Formula

a(n) = 2*a(n-8) - a(n-16).
G.f.: x* (x^2-x+1) * (x^12 +2*x^11 +4*x^10 +3*x^9 +4*x^8 +4*x^7 +7*x^6 +4*x^5 +4*x^4 +3*x^3 +4*x^2 +2*x +1) / ( (x-1)^2 *(x+1)^2 *(x^2+1)^2 *(x^4+1)^2 ). - R. J. Mathar, Dec 02 2010
From R. J. Mathar, Apr 18 2011: (Start)
a(n) = A109049(n)/8.
Dirichlet g.f. zeta(s-1)*(1-1/2^s-1/2^(2s)-1/2^(3s)).
Multiplicative with a(2^e) = 2^max(0,e-3). a(p^e) = p^e if p>2. (End)
a(n) = n/gcd(n,8), n >= 0. See the harmonic mean comment above. - Wolfdieter Lang, Jul 04 2013
a(n) = n if n is odd; for n == 0 (mod 8) it is n/8, for n == 2 or 6 (mod 8) it is n/2 and for n == 4 (mod 8) it is n/4. - Wolfdieter Lang, Dec 04 2013
From Peter Bala, Feb 20 2019: (Start)
O.g.f.: Sum_{n >= 0} a(n)*x^n = F(x) - F(x^2) - F(x^4) - F(x^8), where F(x) = x/(1 - x)^2.
More generally, for m >= 1, Sum_{n >= 0} (a(n)^m)*x^n = F(m,x) + (1 - 2^m)*( F(m,x^2) + F(m,x^4) + F(m,x^8) ), where F(m,x) = A(m,x)/(1 - x)^(m+1) with A(m,x) the m-th Eulerian polynomial: A(1,x) = x, A(2,x) = x*(1 + x), A(3,x) = x*(1 + 4*x + x^2) - see A008292.
Sum_{n >= 1} (1/n)*a(n)*x^n = G(x) - (1/2)*G(x^2) - (1/4)*G(x^4) - (1/8)*G(x^8), where G(x) = x/(1 - x).
Sum_{n >= 1} (1/n^2)*a(n)*x^n = L(x) - (1/2^2)*L(x^2) - (1/4)^2*L(x^4) - (1/8)^2*L(x^8), where L(x) = Log(1/(1 - x)).
Sum_{n >= 1} (1/a(n))*x^n = L(x) + (1/2)*L(x^2) + (1/2)*L(x^4) + (1/2)*L(x^8). (End)
Sum_{k=1..n} a(k) ~ (43/128) * n^2. - Amiram Eldar, Nov 25 2022
Showing 1-10 of 26 results. Next