A045896 Denominator of n/((n+1)*(n+2)) = A026741/A045896.
1, 6, 6, 20, 15, 42, 28, 72, 45, 110, 66, 156, 91, 210, 120, 272, 153, 342, 190, 420, 231, 506, 276, 600, 325, 702, 378, 812, 435, 930, 496, 1056, 561, 1190, 630, 1332, 703, 1482, 780, 1640, 861, 1806, 946, 1980, 1035, 2162, 1128, 2352, 1225, 2550, 1326, 2756, 1431
Offset: 0
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
- Ralf W. Grosse-Kunstleve, Origin of EIS sequences A045895 & A045896. [Wayback Machine copy]
- Masanobu Kaneko, The Akiyama-Tanigawa algorithm for Bernoulli numbers, J. Integer Sequences, 3 (2000), Article 00.2.9.
Programs
-
Haskell
import Data.Ratio ((%), denominator) a045896 n = denominator $ n % ((n + 1) * (n + 2)) -- Reinhard Zumkeller, Dec 12 2011
-
Maple
seq((n+1)*(n+2)*(3-(-1)^n)/4, n=0..20); # C. Ronaldo with(combinat): seq(lcm(n+1,binomial(n+2,n)), n=0..50); # Zerinvary Lajos, Apr 20 2008
-
Mathematica
Table[LCM[2*n + 2, n + 2]/2, {n, 0, 40}] (* corrected by Amiram Eldar, Sep 14 2022 *) Denominator[#[[1]]/(#[[2]]#[[3]])&/@Partition[Range[0,60],3,1]] (* Harvey P. Dale, Aug 15 2013 *)
-
PARI
Vec((2*x^3+3*x^2+6*x+1)/(1-x^2)^3+O(x^99)) \\ Charles R Greathouse IV, Mar 23 2016
Formula
G.f.: (2*x^3+3*x^2+6*x+1)/(1-x^2)^3.
a(n) = (n+1)*(n+2) if n odd; or (n+1)*(n+2)/2 if n even = (n+1)*(n+2)*(3-(-1)^n)/4. - C. Ronaldo (aga_new_ac(AT)hotmail.com), Dec 16 2004
Sum_{n>=0} 1/a(n) = 1 + log(2). - Amiram Eldar, Sep 11 2022
From Amiram Eldar, Sep 14 2022: (Start)
a(n) = lcm(2*n+2, n+2)/2.
a(n) = A045895(n+2)/2. (End)
E.g.f.: (2 + 8*x + x^2)*cosh(x)/2 + (2 + 2*x + x^2)*sinh(x). - Stefano Spezia, Apr 24 2024
Comments