cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 205 results. Next

A045896 Denominator of n/((n+1)*(n+2)) = A026741/A045896.

Original entry on oeis.org

1, 6, 6, 20, 15, 42, 28, 72, 45, 110, 66, 156, 91, 210, 120, 272, 153, 342, 190, 420, 231, 506, 276, 600, 325, 702, 378, 812, 435, 930, 496, 1056, 561, 1190, 630, 1332, 703, 1482, 780, 1640, 861, 1806, 946, 1980, 1035, 2162, 1128, 2352, 1225, 2550, 1326, 2756, 1431
Offset: 0

Views

Author

Keywords

Comments

Also period length divided by 2 of pairs (a,b), where a has period 2*n-2 and b has period n.
From Paul Curtz, Apr 17 2014: (Start)
Difference table of A026741/A045896:
0, 1/6, 1/6, 3/20, 2/15, 5/42, ...
1/6, 0, -1/60, -1/60, -1/70, -1/84, ... = 1/6, -A051712/A051713
-1/6, -1/60, 0, 1/420, 1/420, 1/504, ...
3/20, 1/60, 1/420, 0, -1/2520, -1/2520, ...
-2/15, -1/70, -1/420, -1/2520, 0, 1/13860, ...
5/42, 1/84, 1/504, 1/2520, -1/13860, 0, ...
Autosequence of the first kind. The main diagonal is A000004. The first two upper diagonals are equal. Their denominators are A000911. (End)

Crossrefs

Programs

  • Haskell
    import Data.Ratio ((%), denominator)
    a045896 n = denominator $ n % ((n + 1) * (n + 2))
    -- Reinhard Zumkeller, Dec 12 2011
    
  • Maple
    seq((n+1)*(n+2)*(3-(-1)^n)/4, n=0..20); # C. Ronaldo
    with(combinat): seq(lcm(n+1,binomial(n+2,n)), n=0..50); # Zerinvary Lajos, Apr 20 2008
  • Mathematica
    Table[LCM[2*n + 2, n + 2]/2, {n, 0, 40}] (* corrected by Amiram Eldar, Sep 14 2022 *)
    Denominator[#[[1]]/(#[[2]]#[[3]])&/@Partition[Range[0,60],3,1]] (* Harvey P. Dale, Aug 15 2013 *)
  • PARI
    Vec((2*x^3+3*x^2+6*x+1)/(1-x^2)^3+O(x^99)) \\ Charles R Greathouse IV, Mar 23 2016

Formula

G.f.: (2*x^3+3*x^2+6*x+1)/(1-x^2)^3.
a(n) = (n+1)*(n+2) if n odd; or (n+1)*(n+2)/2 if n even = (n+1)*(n+2)*(3-(-1)^n)/4. - C. Ronaldo (aga_new_ac(AT)hotmail.com), Dec 16 2004
a(2*n) = A000384(n+1); a(2*n+1) = A026741(n+1). - Reinhard Zumkeller, Dec 12 2011
Sum_{n>=0} 1/a(n) = 1 + log(2). - Amiram Eldar, Sep 11 2022
From Amiram Eldar, Sep 14 2022: (Start)
a(n) = lcm(2*n+2, n+2)/2.
a(n) = A045895(n+2)/2. (End)
E.g.f.: (2 + 8*x + x^2)*cosh(x)/2 + (2 + 2*x + x^2)*sinh(x). - Stefano Spezia, Apr 24 2024

A165367 Trisection a(n) = A026741(3n + 2).

Original entry on oeis.org

1, 5, 4, 11, 7, 17, 10, 23, 13, 29, 16, 35, 19, 41, 22, 47, 25, 53, 28, 59, 31, 65, 34, 71, 37, 77, 40, 83, 43, 89, 46, 95, 49, 101, 52, 107, 55, 113, 58, 119, 61, 125, 64, 131, 67, 137, 70, 143, 73, 149, 76, 155, 79, 161, 82, 167, 85, 173, 88, 179, 91, 185, 94, 191, 97, 197
Offset: 0

Views

Author

Paul Curtz, Sep 17 2009

Keywords

Comments

The other trisections are A165351 and A165355.

Crossrefs

Programs

Formula

a(n)*A022998(n) = A045944(n).
a(n)*A026741(n+1) = A000326(n+1).
a(2n) = A016777(n); a(2n+1) = A016969(n).
From R. J. Mathar Nov 22 2009: (Start)
a(n) = 2*a(n-2) - a(n-4).
G.f.: (1 + 5*x + 2*x^2 + x^3)/((1-x)^2*(1+x)^2). (End)

Extensions

All comments rewritten as formulas by R. J. Mathar, Nov 22 2009

A051712 Numerator of b(n)-b(n+1), where b(n) = n/((n+1)(n+2)) = A026741/A045896.

Original entry on oeis.org

0, 1, 1, 1, 1, 5, 1, 7, 1, 3, 5, 11, 1, 13, 7, 5, 2, 17, 3, 19, 5, 7, 11, 23, 1, 25, 13, 9, 7, 29, 5, 31, 4, 11, 17, 35, 3, 37, 19, 13, 5, 41, 7, 43, 11, 15, 23, 47, 2, 49, 25, 17, 13, 53, 9, 55, 7, 19, 29, 59, 5, 61, 31, 21, 8, 65, 11, 67, 17, 23, 35, 71, 3, 73
Offset: 1

Views

Author

Keywords

Examples

			0, 1/60, 1/60, 1/70, 1/84, 5/504, 1/120, 7/990, 1/165, 3/572,...
		

Crossrefs

Row 3 of table in A051714/A051715.

Programs

  • Mathematica
    b[n_] := n/((n + 1) (n + 2)); Numerator[-Differences[Array[b, 100]]]
    (* or *)
    f[p_, e_] := p^e; f[2, e_] := If[e < 3, 1, 2^(e - 3)]; f[3, e_] := 3^(e - 1); a[1] = 0; a[n_] := Times @@ f @@@ FactorInteger[n - 1]; Array[a, 100] (* Amiram Eldar, Nov 20 2022 *)

Formula

c(n) = a(n+1) is multiplicative with c(2^e) = 2^(e-3) if e > 2 and 1 otherwise, c(3^e) = 3^(e-1), and c(p^e) = p^e if p >= 5. [corrected by Amiram Eldar, Nov 20 2022]
Sum_{k=1..n} a(k) ~ (301/1152) * n^2. - Amiram Eldar, Nov 20 2022

A349341 Dirichlet inverse of A026741, which is defined as n if n is odd, n/2 if n is even.

Original entry on oeis.org

1, -1, -3, -1, -5, 3, -7, -1, 0, 5, -11, 3, -13, 7, 15, -1, -17, 0, -19, 5, 21, 11, -23, 3, 0, 13, 0, 7, -29, -15, -31, -1, 33, 17, 35, 0, -37, 19, 39, 5, -41, -21, -43, 11, 0, 23, -47, 3, 0, 0, 51, 13, -53, 0, 55, 7, 57, 29, -59, -15, -61, 31, 0, -1, 65, -33, -67, 17, 69, -35, -71, 0, -73, 37, 0, 19, 77, -39, -79
Offset: 1

Views

Author

Antti Karttunen, Nov 15 2021

Keywords

Crossrefs

Agrees with A349343 on odd numbers.

Programs

  • Mathematica
    a[1]=1;a[n_]:=-DivisorSum[n,If[OddQ[n/#],n/#,n/(2#)]*a@#&,#Giorgos Kalogeropoulos, Nov 15 2021 *)
    f[p_, e_] := If[e == 1, -p, 0]; f[2, e_] := -1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 18 2023 *)
  • PARI
    A349341(n) = { my(f = factor(n)); prod(i=1, #f~, if(2==f[i,1], -1, if(1==f[i,2], -f[i,1], 0))); };
    
  • Python
    from sympy import prevprime, factorint, prod
    def f(p, e):
        return -1 if p == 2 else 0 if e > 1 else -p
    def a(n):
        return prod(f(p, e) for p, e in factorint(n).items()) # Sebastian Karlsson, Nov 15 2021

Formula

a(1) = 1; a(n) = -Sum_{d|n, d < n} A026741(n/d) * a(d).
a(n) = A349342(n) - A026741(n).
a(2n+1) = A349343(2n+1) for all n >= 1.
Multiplicative with a(2^e) = -1, a(p) = -p and a(p^e) = 0 if e > 1. - Sebastian Karlsson, Nov 15 2021

A051713 Denominator of b(n)-b(n+1), where b(n) = n/((n+1)(n+2)) = A026741/A045896.

Original entry on oeis.org

1, 60, 60, 70, 84, 504, 120, 990, 165, 572, 1092, 2730, 280, 4080, 2448, 1938, 855, 7980, 1540, 10626, 3036, 4600, 7800, 17550, 819, 21924, 12180, 8990, 7440, 32736, 5984, 39270, 5355, 15540, 25308, 54834, 4940, 63960, 34440
Offset: 1

Views

Author

Keywords

Examples

			0, 1/60, 1/60, 1/70, 1/84, 5/504, 1/120, 7/990, 1/165, 3/572,...
		

Crossrefs

Cf. A051712. Row 3 of table in A051714/A051715.

Programs

  • Mathematica
    Denominator[#[[1]]-#[[2]]&/@(Partition[#[[1]]/(#[[2]]#[[3]])&/@Partition[ Range[50],3,1],2,1])] (* Harvey P. Dale, Nov 15 2014 *)

A214281 Triangle by rows, row n contains the ConvOffs transform of the first n terms of 1, 1, 3, 2, 5, 3, 7, ... (A026741 without leading zero).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 2, 6, 2, 1, 1, 5, 10, 10, 5, 1, 1, 3, 15, 10, 15, 3, 1, 1, 7, 21, 35, 35, 21, 7, 1, 1, 4, 28, 28, 70, 28, 28, 4, 1, 1, 9, 36, 84, 126, 126, 84, 36, 9, 1, 1, 5, 45, 60, 210, 126, 210, 60, 45, 5, 1, 1, 11, 55, 165, 330, 462, 462, 330, 165, 55, 11, 1
Offset: 0

Views

Author

Gary W. Adamson, Jul 09 2012

Keywords

Comments

The ConvOffs transform of a sequence s(0), s(1), ..., s(t-1) is defined by a(0)=1 and a(n) = a(n-1)*s(t-n)/s(n-1) for 1 <= n < t. An example of this process is also shown in the Narayana triangle, A001263. By increasing the length t of the input sequence (here: A026741) we create more and more rows of the triangle.

Examples

			First few rows of the triangle:
  1;
  1,  1;
  1,  1,  1;
  1,  3,  3,   1;
  1,  2,  6,   2,   1;
  1,  5, 10,  10,   5,   1;
  1,  3, 15,  10,  15,   3,   1;
  1,  7, 21,  35,  35,  21,   7,   1;
  1,  4, 28,  28,  70,  28,  28,   4,   1;
  1,  9, 36,  84, 126, 126,  84,  36,   9,  1;
  1,  5, 45,  60, 210, 126, 210,  60,  45,  5,  1;
  1, 11, 55, 165, 330, 462, 462, 330, 165, 55, 11, 1;
  ...
		

Crossrefs

Cf. A134683 (row sums), A026741, A001263.

Formula

T(n,k) = binomial(n,k) if n is odd.

A092530 a(0) = 0; for n > 0, a(n) = T(n) + k where T(n) is the n-th triangular number (A000217) and k (see A026741) is the smallest positive number such that a(n) is divisible by n.

Original entry on oeis.org

0, 2, 4, 9, 12, 20, 24, 35, 40, 54, 60, 77, 84, 104, 112, 135, 144, 170, 180, 209, 220, 252, 264, 299, 312, 350, 364, 405, 420, 464, 480, 527, 544, 594, 612, 665, 684, 740, 760, 819, 840, 902, 924, 989, 1012, 1080, 1104, 1175, 1200, 1274, 1300, 1377, 1404, 1484
Offset: 0

Views

Author

N. J. A. Sloane, Apr 08 2004

Keywords

Crossrefs

Equals A000217 + A026741.

Programs

  • Maple
    seq(n*(1+ceil(n/2)), n=0..53); # Zerinvary Lajos and Klaus Brockhaus, Apr 10 2007
  • Mathematica
    {0}~Join~Array[Block[{k = 1}, While[GCD[#1, #2 + k] < #1, k++]; #2 + k] & @@ {#, (#^2 + #)/2} &, 53] (* or *)
    CoefficientList[Series[x (2 + 2 x + x^2 - x^3)/((1 - x)^3*(1 + x)^2), {x, 0, 53}], x] (* Michael De Vlieger, Feb 03 2019 *)
    LinearRecurrence[{1,2,-2,-1,1},{0,2,4,9,12},60] (* Harvey P. Dale, Sep 21 2024 *)
  • PARI
    for(n=0,53,print1(n*(1+ceil(n/2)),",")); \\ Klaus Brockhaus, Apr 10 2007
    
  • PARI
    concat(0, Vec(x*(2 + 2*x + x^2 - x^3) / ((1 - x)^3*(1 + x)^2) + O(x^40))) \\ Colin Barker, Feb 03 2019

Formula

a(0) = 0, a(2n) = a(2n-1) + n, a(2n-1) = a(2n-2) + 3n-1. - Amarnath Murthy, Jul 04 2004
From Colin Barker, Feb 03 2019: (Start)
G.f.: x*(2 + 2*x + x^2 - x^3) / ((1 - x)^3*(1 + x)^2).
a(n) = (n*(2 + n)) / 2 for n even.
a(n) = (n*(3 + n)) / 2 for n odd.
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n>4.
(End)

A195309 Row sums of an irregular triangle read by rows in which row n lists the next A026741(n+1) natural numbers A000027.

Original entry on oeis.org

1, 9, 11, 45, 39, 126, 94, 270, 185, 495, 321, 819, 511, 1260, 764, 1836, 1089, 2565, 1495, 3465, 1991, 4554, 2586, 5850, 3289, 7371, 4109, 9135, 5055, 11160, 6136, 13464, 7361, 16065, 8739, 18981, 10279, 22230, 11990, 25830, 13881
Offset: 1

Views

Author

Omar E. Pol, Sep 21 2011

Keywords

Comments

The integers in same rows of the source triangle have a property related to Euler's Pentagonal Theorem.
Note that the column 1 of the mentioned triangle gives the positive terms of A001318 (see example).

Examples

			a(1) = 1
a(2) = 2+3+4 = 9
a(3) = 5+6 = 11
a(4) = 7+8+9+10+11 = 45
a(5) = 12+13+14 = 39
a(6) = 15+16+17+18+19+20+21 = 126
a(7) = 22+23+24+25 = 94
a(8) = 26+27+28+29+30+31+32+33+34 = 270
a(9) = 35+36+37+38+39 = 185
		

Crossrefs

Cf. A026741, A195310, A195311, A004188 (bisection).

Programs

  • Maple
    A195309 := proc(n)
            (n+1)*(9*n^2+18*n-1+(3*n^2+6*n+1)*(-1)^n)/32
    end proc:
    seq(A195309(n),n=1..60) ; # R. J. Mathar, Oct 08 2011
  • Mathematica
    LinearRecurrence[{0,4,0,-6,0,4,0,-1},{1,9,11,45,39,126,94,270},80] (* Harvey P. Dale, Jun 22 2015 *)

Formula

a(n) = (n+1)*(9*n^2+18*n-1+(3*n^2+6*n+1)*(-1)^n)/32 . - R. J. Mathar, Oct 08 2011
G.f. x*(1+9*x+7*x^2+9*x^3+x^4) / ( (x-1)^4*(1+x)^4 ). - R. J. Mathar, Oct 08 2011

A349342 Sum of A026741 and its Dirichlet inverse.

Original entry on oeis.org

2, 0, 0, 1, 0, 6, 0, 3, 9, 10, 0, 9, 0, 14, 30, 7, 0, 9, 0, 15, 42, 22, 0, 15, 25, 26, 27, 21, 0, 0, 0, 15, 66, 34, 70, 18, 0, 38, 78, 25, 0, 0, 0, 33, 45, 46, 0, 27, 49, 25, 102, 39, 0, 27, 110, 35, 114, 58, 0, 15, 0, 62, 63, 31, 130, 0, 0, 51, 138, 0, 0, 36, 0, 74, 75, 57, 154, 0, 0, 45, 81, 82, 0, 21, 170, 86
Offset: 1

Views

Author

Antti Karttunen, Nov 15 2021

Keywords

Crossrefs

Programs

Formula

a(n) = A026741(n) + A349341(n).
a(1) = 2, and for n > 1, a(n) = -Sum_{d|n, 1A026741(d) * A349341(n/d).

A139633 Triangle read by rows: binomial transform of a diagonalized matrix of A026741.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 3, 9, 2, 1, 4, 18, 8, 5, 1, 5, 30, 20, 25, 3, 1, 6, 45, 40, 75, 18, 7, 1, 7, 63, 70, 175, 63, 49, 4, 1, 8, 84, 112, 350, 168, 196, 32, 9, 1, 9, 108, 168, 630, 378, 588, 144, 81, 5, 1, 10, 135, 240, 1050, 756, 1470, 480, 405, 50, 11, 1, 11, 165, 330, 1650, 1386
Offset: 1

Views

Author

Gary W. Adamson and Roger L. Bagula, Apr 27 2008

Keywords

Comments

Row sums = A084860: (1, 2, 6, 15, 36, 84, 192,...).

Examples

			First few rows of the triangle are:
1;
1, 1;
1, 2, 3;
1, 3, 9, 2;
1, 4, 18, 8, 5;
1, 5, 30, 20, 25, 3;
1, 6, 45, 40, 75, 18, 7;
1, 7, 63, 70, 175, 63, 49, 4;
...
		

Crossrefs

Formula

Let X = a diagonalized matrix of A026741: [1; 0,1; 0,0,3; 0,0,0,2;], where the first few nonzero terms of A026741 are (1, 1, 3, 2, 5, 3, 7,...). The triangle = A007318 * X.
Showing 1-10 of 205 results. Next