A109437 a(-1) = a(0) = 0, a(1) = 1; a(n) = 5a(n-1) - 5a(n-2) + a(n-3) + 2*(-1)^(n+1), alternatively a(n) = 3a(n-1) + 3a(n-2) - a(n-3).
0, 1, 3, 12, 44, 165, 615, 2296, 8568, 31977, 119339, 445380, 1662180, 6203341, 23151183, 86401392, 322454384, 1203416145, 4491210195, 16761424636, 62554488348, 233456528757, 871271626679, 3251629977960, 12135248285160, 45289363162681, 169022204365563, 630799454299572
Offset: 0
Links
- R. C. Alperin, A nonlinear recurrence and its relations to Chebyshev polynomials, Fib. Q., Vol. 58, No. 2 (2020), 140-142.
- Paul Barry, Symmetric Third-Order Recurring Sequences, Chebyshev Polynomials, and Riordan Arrays, JIS 12 (2009) 09.8.6
- Charles H. Jepsen, Packing a box with bricks, Math. Mag. 64 (2) (1991) 92-97. b(n) there is 0, 4, 12, 48,... = 4*a(n) here.
- Index entries for linear recurrences with constant coefficients, signature (3,3,-1).
Programs
-
Maple
with(numtheory):a := cfrac (tan(Pi/3),60): > b := cfrac (tan(Pi/6),60): > seq(nthnumer (b,i)*nthdenom (a,i), i=0..24 ); # Zerinvary Lajos, Feb 08 2007
-
Mathematica
LinearRecurrence[{3,3,-1},{0,1,3},40] (* Harvey P. Dale, Apr 21 2018 *)
-
PARI
{a(n) = local(s=1); if( n<0, n = -1 - n; s=-1); s * polcoeff( x / ((x + 1) * (x^2 -4*x + 1)) + x * O(x^n), n)} /* Michael Somos, Jul 27 2012 */
Formula
G.f.: x/((x+1)*(x^2-4*x+1)).
a(n) = ((1 + sqrt(3))*(2 + sqrt(3))^n + (1 - sqrt(3))*(2 - sqrt(3))^n - 2*(-1)^n)/12. - Stefano Spezia, Sep 19 2023
a(n)+a(n+1) = A001353(n+1). - R. J. Mathar, Aug 31 2025
Comments