A109700 Number of partitions of n into parts each equal to 4 mod 5.
1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 2, 1, 1, 1, 2, 2, 2, 1, 2, 3, 4, 2, 2, 3, 5, 4, 3, 3, 6, 6, 6, 4, 6, 7, 9, 7, 7, 8, 11, 11, 11, 9, 12, 14, 16, 13, 14, 16, 21, 20, 19, 18, 24, 26, 27, 24, 27, 31, 36, 34, 34, 35, 43, 45, 47, 43, 49, 55, 62, 58, 59, 63, 75, 77, 77, 75, 87
Offset: 0
Keywords
Examples
a(30)=2 since 30 = 14+4+4+4+4 = 9+9+4+4+4
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Maple
g:=1/product(1-x^(4+5*j),j=0..25): gser:=series(g,x=0,95): seq(coeff(gser,x,n),n=0..90); # Emeric Deutsch, Mar 30 2006
-
Mathematica
nmax=100; CoefficientList[Series[Product[1/(1-x^(5*k+4)), {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 27 2015 *)
Formula
G.f.: 1/product(1-x^(4+5j), j=0..infinity). - Emeric Deutsch, Mar 30 2006
a(n) ~ Gamma(4/5) * exp(Pi*sqrt(2*n/15)) / (2^(19/10) * 3^(2/5) * 5^(1/10) * Pi^(1/5) * n^(9/10)) * (1 - (9*sqrt(6/5)/(5*Pi) + Pi/(120*sqrt(30))) / sqrt(n)). - Vaclav Kotesovec, Feb 27 2015, extended Jan 24 2017
a(n) = (1/n)*Sum_{k=1..n} A284103(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 20 2017
Extensions
More terms from Michael Somos, Aug 10 2005