cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A111241 a(n) = A109735(n)/A109890(n+1).

Original entry on oeis.org

1, 1, 3, 2, 2, 4, 9, 5, 4, 3, 5, 5, 9, 5, 4, 8, 15, 8, 12, 27, 52, 7, 4, 2, 5, 3, 6, 106, 14, 5, 9, 5, 4, 6, 107, 180, 21, 362, 121, 183, 176, 69, 59, 150, 28, 151, 232, 19, 10, 2, 11, 9, 233, 360, 247, 304, 155, 244, 195, 98, 231, 174, 196, 50, 591, 296, 198, 51, 199
Offset: 2

Views

Author

N. J. A. Sloane, Oct 30 2005

Keywords

Comments

This is always an integer for n>=2.
a(n) = 1 for n in A111315. When this happens A109890(n+1) makes a large jump. The corresponding values of A109890(n+1) are in A111316 (cf. A111242).

Examples

			A109735(4)=12, A109890(5)=4, so a(4) = 12/4 = 3.
		

Crossrefs

Programs

  • Mathematica
    nn = 71; c[_] := False;
    Array[Set[{a[#], c[#]}, {#, True}] &, 2]; s = a[1] + a[2];
    Reap[Do[k = SelectFirst[Divisors[s], ! c[#] &];
        c[k] = True; Sow[s/k];
    s += k, {n, 3, nn}] ][[-1, 1]] (* Michael De Vlieger, Apr 26 2024 *)

Formula

a(n) = A094340(n) for all n > 1. - David Wasserman, Jan 06 2009

A371910 Position of A109890(n) among the sorted set of divisors of A109735(n-1).

Original entry on oeis.org

2, 4, 4, 4, 7, 6, 3, 4, 9, 5, 6, 12, 9, 9, 11, 14, 9, 13, 9, 4, 4, 3, 6, 7, 6, 10, 12, 5, 5, 6, 8, 9, 13, 12, 4, 15, 5, 3, 4, 6, 8, 4, 9, 17, 7, 2, 5, 3, 8, 7, 6, 13, 8, 17, 6, 7, 4, 9, 10, 8, 13, 17, 15, 7, 3, 7, 13, 5, 6, 16, 8, 11, 8, 5, 4, 13, 12, 17, 5, 6
Offset: 3

Views

Author

Michael De Vlieger, Apr 26 2024

Keywords

Comments

A109890(n) is the a(n)-th smallest divisor of A109735(n-1).

Examples

			Table relating sequences b = A109890, s = A109735, c = A371909. a(n) = c(n) implies both A111315(i) = n and A111316(i) = b(n) = s(n-1).
    n     b(n)   s(n-1)  a(n)  c(n)    i
   --------------------------------------
    3       3   =    3     2     2     1
    4       6   =    6     4     4     2
    5       4       12     4     6
    6       8       16     4     5
    7      12       24     7     8
    8       9       36     6     9
    9       5       45     3     6
   10      10       50     4     6
   11      15       60     9    12
   12      25       75     5     6
  ...
  222  113573 = 113573     4     4     3
  ...
  232  230801 = 230801     4     4     4
  ...
  279  941071 = 941071     4     4     5
  ...
		

Crossrefs

Programs

  • Mathematica
    nn = 120; c[_] := False;
    Array[Set[{a[#], c[#]}, {#, True}] &, 2]; s = a[1] + a[2];
    Reap[Do[d = Divisors[s]; k = SelectFirst[d, ! c[#] &];
        c[k] = True; Sow[FirstPosition[d, k][[1]]];
        s += k, {n, 3, nn}] ][[-1, 1]]

Formula

1 < a(n) <= A371909(n), where A371909(n) = A000005(A109735(n-1)), corollary of Sloane's theorem in the comments in A109890.
A109890(n) = T(j, k), where T = A027750, j = A109735(n-1), and k = a(n).
A371909(n) = A371910(n) if and only if A109890(n) = A109735(n-1).

A109890 a(1)=1; for n>1, a(n) is the smallest number not already present which is a divisor or a multiple of a(1)+...+a(n-1).

Original entry on oeis.org

1, 2, 3, 6, 4, 8, 12, 9, 5, 10, 15, 25, 20, 24, 16, 32, 48, 30, 18, 36, 27, 13, 7, 53, 106, 265, 159, 318, 212, 14, 107, 321, 214, 428, 642, 535, 35, 21, 181, 11, 33, 22, 23, 59, 70, 28, 151, 29, 19, 233, 466, 2563, 699, 932, 40, 26, 38, 31, 61, 39, 49, 98, 42
Offset: 1

Views

Author

Amarnath Murthy, Jul 13 2005

Keywords

Comments

Conjectured to be a rearrangement of the natural numbers.
For n>2, a(n) <= a(1)+...+a(n-1). Proof: a(1)+...+a(n-1) >= max { a(i), i=1..n-1}, so a(1)+...+a(n-1) is always a candidate for a(n). QED. So the definition may be changed to: a(1)=1, a(2)=2; for n>2, a(n) is the smallest number not already present which is a divisor of a(1)+...+a(n-1). - N. J. A. Sloane, Nov 05 2005
Except for first two terms, same as A094339. - David Wasserman, Jan 06 2009
A253443(n) = smallest missing number within the first n terms. - Reinhard Zumkeller, Jan 01 2015

Examples

			Let s(n) = A109735(n) = sum(a(1..n)):
.                   | divisors of s(n),
.                   | in brackets when occurring in a(1..n)
.   n | a(n) | s(n) | A027750(s(n),1..A000005(s(n)))
.  ---+------+------+---------------------------------------------------
.   1 |    1 |    1 | (1)
.   2 |    2 |    3 | (1)  3
.   3 |    3 |    6 | (1 2 3)  6
.   4 |    6 |   12 | (1 2 3)  4  (6)  12
.   5 |    4 |   16 | (1 2 4)  8 16
.   6 |    8 |   24 | (1 2 3 4 6 8)  12 24
.   7 |   12 |   36 | (1 2 3 4 6)  9  (12)  18 36
.   8 |    9 |   45 | (1 3)  5  (9)  15 45
.   9 |    5 |   50 | (1 2 5)  10 25 50
.  10 |   10 |   60 | (1 2 3 4 5 6 10 12)  15 20 30 60
.  11 |   15 |   75 | (1 3 5 15)  25 75
.  12 |   25 |  100 | (1 2 4 5 10)  20  (25)  50 100
.  13 |   20 |  120 | (1 2 3 4 5 6 8 10 12 15 20)  24 30 40 60 120
.  14 |   24 |  144 | (1 2 3 4 6 8 9 12)  16 18  (24)  36 48 72 144
.  15 |   16 |  160 | (1 2 4 5 8 10 16 20)  32 40 80 160
.  16 |   32 |  192 | (1 2 3 4 6 8 12 16 24 32)  48 64 96 192
.  17 |   48 |  240 | (.. 8 10 12 15 16 20 24)  30 40  (48)  60 80 120 240
.  18 |   30 |  270 | (1 2 3 5 6 9 10 15)  18 27  (30)  45 54 90 135 270
.  19 |   18 |  288 | (.. 6 8 9 12 16 18 24 32)  36  (48)  72 96 144 288
.  20 |   36 |  324 | (1 2 3 4 6 9 12 18)  27  (36)  54 81 108 162 324
.  21 |   27 |  351 | (1 3 9)  13  (27)  39 117 351
.  22 |   13 |  364 | (1 2 4)  7  (13)  14 26 28 52 91 182 364
.  23 |    7 |  371 | (1 7)  53 371
.  24 |   53 |  424 | (1 2 4 8 53)  106 212 424
.  25 |  106 |  530 | (1 2 5 10 53 106)  265 530  .
- _Reinhard Zumkeller_, Jan 05 2015
		

Crossrefs

Programs

  • Haskell
    import Data.List (insert)
    a109890 n = a109890_list !! (n-1)
    a109890_list = 1 : 2 : 3 : f (4, []) 6 where
       f (m,ys) z = g $ dropWhile (< m) $ a027750_row' z where
         g (d:ds) | elem d ys = g ds
                  | otherwise = d : f (ins [m, m + 1 ..] (insert d ys)) (z + d)
         ins (u:us) vs'@(v:vs) = if u < v then (u, vs') else ins us vs
    -- Reinhard Zumkeller, Jan 02 2015
    
  • Maple
    M:=2000; a:=array(1..M): a[1]:=1: a[2]:=2: as:=convert(a,set): b:=3: for n from 3 to M do t2:=divisors(b) minus as; t4:=sort(convert(t2,list))[1]; a[n]:=t4; b:=b+t4; as:={op(as),t4}; od: aa:=[seq(a[n],n=1..M)]:
  • Mathematica
    a[1] = 1; a[2] = 2; a[n_] := a[n] = Block[{t = Table[a[i], {i, n - 1}]}, s = Plus @@ t; d = Divisors[s]; l = Complement[d, t]; If[l != {}, k = First[l], k = s; While[Position[t, k] == {}, k += s]; k]]; Table[ a[n], {n, 40}] (* Robert G. Wilson v, Aug 12 2005 *)
  • Python
    from sympy import divisors
    A109890_list, s, y, b = [1, 2], 3, 3, set()
    for _ in range(1,10**3):
        for i in divisors(s):
            if i >= y and i not in b:
                A109890_list.append(i)
                s += i
                b.add(i)
                while y in b:
                    b.remove(y)
                    y += 1
                break # Chai Wah Wu, Jan 05 2015

Extensions

More terms from Erich Friedman, Aug 08 2005

A372111 Partial sums of A124652.

Original entry on oeis.org

1, 3, 6, 10, 15, 24, 30, 38, 54, 66, 77, 84, 98, 126, 144, 168, 189, 216, 248, 279, 360, 370, 390, 403, 572, 594, 627, 646, 663, 702, 728, 777, 814, 858, 894, 942, 996, 1060, 1085, 1120, 1160, 1189, 1230, 1245, 1290, 1320, 1370, 1450, 1508, 1560, 1620, 1692, 1739
Offset: 1

Views

Author

Michael De Vlieger, Apr 25 2024

Keywords

Comments

Analogous to A109735 with respect to A109890.
A007947(A124652(n+1)) | a(n) for n > 2.

Examples

			See A124652.
		

Crossrefs

Programs

  • Mathematica
    nn = 54; c[_] := False; a[1] = 1; a[2] = 2; s = u = 3; c[1] = c[2] = True;
    f[x_] := f[x] = Times @@ FactorInteger[x][[All, 1]];
    {1}~Join~Reap[Do[Sow[s]; k = u; While[Or[Mod[s, f[k]] != 0, c[k]], k++];
        Set[{a[n], c[k]}, {k, True}];
        s += k; If[k == u, While[c[u], u++]], {n, 3, nn}] ][[-1, 1]]

A111315 Positions where A109890(n) = Sum_{i = 1..n-1} A109890(i).

Original entry on oeis.org

3, 4, 222, 232, 279, 568, 634, 844, 1307, 1704, 2016, 2050, 2164, 2325, 2701, 3130, 3225, 3322, 3524, 4673, 6007, 6692, 7141, 7221, 7954, 8689, 11051, 11898, 13959, 14166, 16192, 17078, 17220, 17521, 18071, 22324, 22414, 24757, 28290, 28979
Offset: 1

Views

Author

N. J. A. Sloane, Nov 04 2005

Keywords

Comments

These are the positions where A109735(n) = 2*A109735(n-1), or equally, where A111241(n) = 1.

Crossrefs

Programs

  • PARI
    s = 3; S = Set([1, 2]); i = 3; while (1, d = divisors(s); j = 1; while (setsearch(S, d[j]), j++); n = d[j]; if (n == s, print(i)); s += n; S = setunion(S, Set(n)); i++); \\ David Wasserman, Jan 09 2009

Extensions

More terms from David Wasserman, Jan 09 2009

A371909 Number of divisors of the partial sums of A109890.

Original entry on oeis.org

1, 2, 4, 6, 5, 8, 9, 6, 6, 12, 6, 9, 16, 15, 12, 14, 20, 16, 18, 15, 8, 12, 4, 8, 8, 8, 12, 16, 12, 8, 8, 12, 12, 16, 16, 8, 48, 8, 8, 8, 16, 20, 8, 16, 48, 12, 4, 16, 4, 12, 8, 8, 18, 16, 60, 12, 20, 8, 24, 24, 15, 36, 40, 36, 12, 8, 20, 32, 8, 12, 36, 16, 24
Offset: 1

Views

Author

Michael De Vlieger, Apr 26 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nn = 120; c[_] := False;
    Array[Set[{a[#], c[#]}, {#, True}] &, 2]; s = a[1] + a[2];
    {1}~Join~Reap[Do[k = SelectFirst[Divisors[s], ! c[#] &];
         c[k] = True; Sow[DivisorSigma[0, s]];
         s += k, {n, 3, nn}] ][[-1, 1]]

Formula

a(n) = A000005(A109735(n)).

A372028 Numbers k such that A124652(k) divides A372111(k-1).

Original entry on oeis.org

3, 5, 7, 11, 12, 13, 15, 16, 17, 18, 20, 22, 24, 26, 27, 28, 29, 30, 31, 33, 40, 41, 42, 43, 44, 46, 49, 50, 51, 53, 55, 58, 59, 60, 62, 63, 64, 66, 67, 68, 69, 70, 71, 72, 73, 78, 79, 80, 92, 93, 95, 98, 101, 102, 103, 104, 105, 107, 109, 111, 112, 115, 116, 117
Offset: 1

Views

Author

Michael De Vlieger, May 05 2024

Keywords

Comments

Contains A372009(m), m > 1.
For k in this sequence, A124652(k) has the same relationship with A372111(k-1) as A109890(i) has with A109735(i-1) for i > 2.

Examples

			Let b(x) = A124652(x) and s(x) = A372111(x), where A372111 contains partial sums of A124652.
a(1) = 3 since b(3) = 3, a divisor of s(2) = 3.
a(2) = 5 since b(5) = 5, a divisor of s(4) = 10.
a(3) = 7 since b(7) = 6, a divisor of s(6) = 24, etc.
		

Crossrefs

Programs

  • Mathematica
    nn = 120; c[_] := False;
    rad[x_] := rad[x] = Times @@ FactorInteger[x][[All, 1]];
    f[x_] := Select[Range[x], Divisible[x, rad[#]] &];
    Array[Set[{a[#], c[#]}, {#, True}] &, 2]; s = a[1] + a[2];
    Reap[Do[r = f[s]; k = SelectFirst[r, ! c[#] &];
      If[Divisible[s, k], Sow[i]]; c[k] = True;
      s += k, {i, 3, nn}] ][[-1, 1]]

Formula

A124652(a(n)) is a number in row A372111(a(n)-1) of A027750.

A372322 a(n) = A010846(A372111(n)).

Original entry on oeis.org

1, 2, 5, 6, 5, 11, 18, 8, 16, 22, 5, 28, 13, 33, 23, 38, 11, 26, 12, 9, 58, 28, 80, 5, 30, 55, 19, 27, 19, 56, 37, 21, 27, 87, 44, 44, 48, 38, 18, 58, 42, 5, 110, 26, 112, 140, 38, 45, 32, 144, 102, 59, 5, 139, 225, 39, 44, 22, 180, 86, 114, 34, 23, 133, 41, 115
Offset: 1

Views

Author

Michael De Vlieger, May 05 2024

Keywords

Comments

Let r(x) = A010846(x), the number of m <= x such that rad(m) | x, where rad = A007947.
Let row k of A162306 contain { m : rad(m) | k, m <= k }. Thus r(k) is the length of row k of A162306.
a(n) is the length of row A372111(n) of A162306.
Analogous to A371909, which instead regards A109890 and A109735.

Examples

			Let s(x) = A372111(x) and let r(x) = A010846(x).
a(1) = 1 since r(s(1)) = r(1) = 1.
a(2) = 2 since r(s(2)) = r(3) = 2. For prime p, r(p) = card({1, p}) = 2.
a(3) = 5 since r(s(3)) = r(6) = 5. r(6) = card({1, 2, 3, 4, 6}) = 5.
a(4) = 6 since r(s(4)) = r(10) = 6. r(10) = card({1, 2, 4, 5, 8, 10}) = 6.
a(5) = 5 since r(s(5)) = r(15) = 5. r(15) = card({1, 3, 5, 9, 15}) = 5.
a(6) = 11 since r(s(6)) = r(24) = 11. r(24) = card({1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24}) = 11, etc.
		

Crossrefs

Programs

  • Mathematica
    nn = 68; c[_] := False;
    rad[x_] := rad[x] = Times @@ FactorInteger[x][[All, 1]];
    f[x_] := Select[Range[x], Divisible[x, rad[#]] &];
    Array[Set[{a[#], c[#]}, {#, True}] &, 2]; s = a[1] + a[2];
    {1}~Join~Reap[Do[r = f[s]; k = SelectFirst[r, ! c[#] &];
      Sow[Length[r]]; c[k] = True;
      s += k, {i, 3, nn}] ][[-1, 1]]

A372323 A124652(n) is the a(n)-th term in row A372111(n-1) of irregular triangle A162306.

Original entry on oeis.org

2, 4, 4, 4, 5, 7, 5, 8, 8, 2, 10, 8, 12, 11, 13, 6, 13, 6, 6, 9, 8, 11, 4, 8, 16, 5, 6, 7, 13, 12, 7, 10, 19, 15, 16, 17, 9, 6, 15, 10, 3, 11, 8, 18, 28, 14, 14, 10, 30, 28, 15, 4, 20, 33, 13, 12, 6, 22, 18, 21, 12, 11, 29, 12, 11, 8, 24, 18, 8, 14, 17, 32, 33
Offset: 3

Views

Author

Michael De Vlieger, May 05 2024

Keywords

Comments

Let b(x) = A124652(x) and let s(x) = A372111(x), where A372111 contains partial sums of A124652.
Let r(x) = A010846(x), the number of m <= x such that rad(m) | x, where rad = A007947.
Let row k of A162306 contain { m : rad(m) | k, m <= k }. Thus r(k) is the length of row k of A162306.
Let T(k,j) represent the j-th term in row k of irregular triangle A162306.
a(n) = j is the position of b(n) in row s(n-1) of A162306.
b(n) = T(s(n-1), a(n)).
Analogous to A371910, which instead regards A109890 and A109735.

Examples

			Let b(x) = A124652(x) and let s(x) = A372111(x), where A372111 contains partial sums of A124652.
a(3) = 2 since b(3) = 3 is the 2nd term in row s(3) = 3 of A162306, {1, [3]}.
a(4) = 4 since b(4) = 4 is the 4th term in row s(4) = 6 of A162306, {1, 2, 3, [4], 6}.
a(5) = 4 since b(5) = 5 is T(s(n-1), 4) = T(10, 4), {1, 2, 4, [5], 8, 10}.
a(6) = 4 since b(6) = 9 is T(s(n-1), 4) = T(15, 4), {1, 3, 5, [9], 15}.
a(7) = 5 since b(7) = 6 is T(s(n-1), 5) = T(24, 5), {1, 2, 3, 4, [6], 8, 9, 12, 16, 18, 24}, etc.
Table relating this sequence to b = A124652, s = A372111, r = A372322, and A162306.
   n b(n) s(n-1) a(n) r(n) row s(n-1) of A162306
  ---------------------------------------------------------------------
   3    3    3    2    2   {1, [3]}
   4    4    6    4    5   {1, 2, 3, [4], 6}
   5    5   10    4    6   {1, 2, 4, [5], 8, 10}
   6    9   15    4    5   {1, 3, 5, [9], 15}
   7    6   24    5   11   {1, 2, 3, 4, [6], ..., 24}
   8    8   30    7   18   {1, 2, 3, 4, 5, 6, [8], ..., 30}
   9   16   38    5    8   {1, 2, 4, 8, [16], 19, 32, 38}
  10   12   54    8   16   {1, 2, 3, 4, 6, 8, 9, [12], ..., 54}
  11   11   66    8   22   {1, 2, 3, 4, 6, 8, 9, [11], ..., 66}
  12    7   77    2    5   {1, [7], 11, 49, 77}
  13   14   84   10   28   {1, 2, 3, 4, ..., 12, [14], ..., 84}
  14   28   98    8   13   {1, 2, 4, 7, ..., 16, [28], ..., 98}
		

Crossrefs

Programs

  • Mathematica
    nn = 75; c[_] := False;
    rad[x_] := rad[x] = Times @@ FactorInteger[x][[All, 1]];
    f[x_] := Select[Range[x], Divisible[x, rad[#]] &];
    Array[Set[{a[#], c[#]}, {#, True}] &, 2]; s = a[1] + a[2];
    Reap[Do[r = f[s]; k = SelectFirst[r, ! c[#] &];
      Sow[FirstPosition[r, k][[1]]]; c[k] = True;
      s += k, {i, 3, nn}] ][[-1, 1]]
Showing 1-9 of 9 results.