cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110143 Row sums of triangle A110141.

Original entry on oeis.org

1, 1, 4, 11, 43, 161, 901, 5579, 43206, 378360, 3742738, 40853520, 488029621, 6323154547, 88308425755, 1322120265238, 21122364398761, 358647945023885, 6449299885654827, 122436442904193940, 2447046870232798369, 51358050784584629338, 1129314001779283063606
Offset: 0

Views

Author

Paul D. Hanna, Jul 14 2005

Keywords

Comments

Row n of triangle A110141 lists the denominators of unit fraction coefficients of the products of {c_k}, in ascending order by indices of {c_k}, in the coefficient of x^n in exp(Sum_{k>=1} c_k/k*x^k). There are A000041(n) terms in row n of triangle A110141.
Also, number of orbits of Sym(n)^2 where Sym_n acts by conjugation. Compare the MathOverflow discussion, also Bogaerts-Dukes 2014, and A241584, A241585. - Peter J. Dukes, May 12 2014
Number of isomorphism classes of n-fold coverings of a connected graph with circuit rank 2 [Kwak and Lee]. - Álvar Ibeas, Mar 25 2015

References

  • P. A. MacMahon, The expansion of determinants and permanents in terms of symmetric functions, in Proc. ICM Toronto (ed. J. C. Fields), Toronto University Press, 1924, vol 1, 319-330.
  • J. H. Kwak and J. Lee, Enumeration of graph coverings, surface branched coverings and related group theory, in Combinatorial and Computational Mathematics (Pohang, 2000), ed. S. Hong et al., World Scientific, Singapore 2001, pp. 97-161. Appears to contain this sequence in Table 2. [Added by N. J. A. Sloane, Nov 12 2009]

Crossrefs

Programs

  • Maple
    # Using a function from Alois P. Heinz in A279038:
    b:= proc(n, i) option remember; `if`(n=0, [1],
          `if`(i<1, [], [seq(map(x-> x*i^j*j!,
          b(n-i*j, i-1))[], j=0..n/i)]))
        end:
    seq(add(i, i=b(n$2)), n=0..22); # Peter Luschny, Dec 19 2016
  • Mathematica
    Table[Total[Apply[Times, Tally[#]/.{a_Integer,b_}->a^b b!]& /@ IntegerPartitions[n]],{n,0,21}] (* Wouter Meeussen, Oct 17 2014 *)
    b[n_, i_] := b[n, i] = If[n == 0, {1}, If[i < 1, {}, Flatten[ Table[ Map[ #*i^j*j!&, b[n-i*j, i-1]], {j, 0, n/i}]]]]; Table[Sum[i, {i, b[n, n]}], {n, 0, 22}] (* Jean-François Alcover, Jul 10 2017, after Alois P. Heinz *)
    nmax = 25; CoefficientList[Series[Product[Sum[k!*j^k*x^(j*k), {k, 0, nmax/j}], {j, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 08 2019 *)
    m = 30; CoefficientList[Series[Product[-Gamma[0, -1/(x^j*j)] * Exp[-1/(x^j*j)], {j, 1, m}] / (x^(m*(m + 1)/2)*m!), {x, 0, m}], x] (* Vaclav Kotesovec, Dec 07 2020 *)
  • Sage
    def A110143(n):
        return sum(p.aut() for p in Partitions(n))
    [A110143(n) for n in range(9)]
    # Álvar Ibeas, Mar 26 2015

Formula

G.f.: B(x)*B(2*x^2)*B(3*x^3)*..., where B(x) is g.f. of A000142. - Vladeta Jovovic, Feb 18 2007
a(n) ~ n! * (1 + 2/n^2 + 5/n^3 + 23/n^4 + 106/n^5 + 537/n^6 + 3143/n^7 + 20485/n^8 + 143747/n^9 + 1078660/n^10), for coefficients see A279819. - Vaclav Kotesovec, Mar 16 2015