cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A145503 a(n+1) = a(n)^2+2*a(n)-2 and a(1)=3.

Original entry on oeis.org

3, 13, 193, 37633, 1416317953, 2005956546822746113, 4023861667741036022825635656102100993
Offset: 1

Views

Author

Artur Jasinski, Oct 11 2008

Keywords

Comments

General formula for a(n+1)=a(n)^2+2*a(n)-2 and a(1)=k+1 is a(n)=Floor[((k + Sqrt[k^2 + 4])/2)^(2^((n+1) - 1)).
Essentially the same as A110407. [R. J. Mathar, Mar 18 2009]

Crossrefs

Programs

  • Mathematica
    aa = {}; k = 3; Do[AppendTo[aa, k]; k = k^2 + 2 k - 2, {n, 1, 10}]; aa
    (* or *)
    k = 2; Table[Floor[((k + Sqrt[k^2 + 4])/2)^(2^(n - 1))], {n, 2, 7}]
    NestList[#^2+2#-2&,3,10] (* Harvey P. Dale, Feb 01 2018 *)

Formula

From Peter Bala, Nov 12 2012: (Start)
a(n) = alpha^(2^(n-1)) + (1/alpha)^(2^(n-1)) - 1, where alpha := 2 + sqrt(3).
a(n) = A003010(n-1) - 1. a(n) = 2*A002812(n-1) - 1.
Recurrence: a(n) = 5*(Product {k = 1..n-1} a(k)) - 2 with a(1) = 3.
Product_{n >= 1} (1 + 1/a(n)) = 5/6*sqrt(3).
Product_{n >= 1} (1 + 2/(a(n) + 1)) = sqrt(3).
(End)

A178497 5 followed by A145503.

Original entry on oeis.org

5, 3, 13, 193, 37633, 1416317953, 2005956546822746113, 4023861667741036022825635656102100993, 16191462721115671781777559070120513664958590125499158514329308740975788033
Offset: 0

Views

Author

Roger L. Bagula, May 28 2010

Keywords

Comments

The first 6 entries of the sequence are primes.
The Fermat numbers F(.)=A000215(.) obey equations with flipped signs of the +-2 if compared with the a(n) (see the formula section): F(n) = Prod{i=0,...,n-1} F(i)+2 and F(n) = F(n-1) *(F(n-1)-2)+2. - Vladimir Shevelev, Dec 08 2010

Crossrefs

Programs

  • Mathematica
    Clear[a, n];
    a[ -1] := 1; a[0] := 5;
    a[n_] := a[n] = Product[a[i], {i, 0, n - 1}] - 2;
    Table[a[n], {n, 0, 10}]

Formula

a(n)= ( product_{i=0..n-1} a(i)) -2, n>=1.
a(n) = a(n-1)*( a(n-1)+2 )-2, n>=2. - Vladimir Shevelev, Dec 08 2010

Extensions

Definition simplified by the Assoc. Eds. of the OEIS, Jun 07 2010
Showing 1-2 of 2 results.