A110523 Expansion of (1 + x)/(1 + x + 3*x^2).
1, 0, -3, 3, 6, -15, -3, 48, -39, -105, 222, 93, -759, 480, 1797, -3237, -2154, 11865, -5403, -30192, 46401, 44175, -183378, 50853, 499281, -651840, -846003, 2801523, -263514, -8141055, 8931597, 15491568, -42286359, -4188345, 131047422, -118482387, -274659879, 630107040, 193872597
Offset: 0
References
- Roman Witula, On Some Applications of Formulae for Unimodular Complex Numbers, Jacek Skalmierski's Press, Gliwice 2011.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Taras Goy and Mark Shattuck, Determinants of Toeplitz-Hessenberg Matrices with Generalized Leonardo Number Entries, Ann. Math. Silesianae, Vol. 38, No. 2 (2024), pp. 284-313. See p. 298.
- Index entries for linear recurrences with constant coefficients, signature (-1,-3).
Programs
-
Magma
[n le 2 select 2-n else -(Self(n-1) +3*Self(n-2)): n in [1..50]]; // G. C. Greubel, Dec 28 2023
-
Mathematica
CoefficientList[Series[(1+x)/(1+x+3*x^2), {x,0,50}], x] (* G. C. Greubel, Aug 30 2017 *) LinearRecurrence[{-1,-3},{1,0},40] (* Harvey P. Dale, Jul 02 2022 *)
-
PARI
my(x='x+O('x^50)); Vec((1+x)/(1+x+3*x^2)) \\ G. C. Greubel, Aug 30 2017
-
SageMath
@CachedFunction # a = A110523 def a(n): return 1-n if n<2 else -a(n-1) -3*a(n-2) [a(n) for n in range(41)] # G. C. Greubel, Dec 28 2023
Formula
a(n) = Sum_{k=0..n} Sum_{j=0..n} (-1)^(n-j)*C(n, j)*(-3)^(j-k)*C(k, j-k).
From Roman Witula, Jul 27 2012: (Start)
a(n+2) + a(n+1) + 3*a(n) = 0.
a(n+1) = (-1)^n*(3*i*sqrt(11)/11)*(((1 + i*sqrt(11))/2)^(n-1) - ((1 - i*sqrt(11))/2)^(n-1)). (End)
From G. C. Greubel, Dec 28 2023: (Start)
a(n) = (-1)^n*3^((n-1)/2)*( sqrt(3)*ChebyshevU(n, 1/(2*sqrt(3))) - ChebyshevU(n-1, 1/(2*sqrt(3))) ).
E.g.f.: exp(-x/2)*(sqrt(11)*cos(sqrt(11)*x/2) + sin(sqrt(11)*x/2))/sqrt(11). - Stefano Spezia, Jul 27 2025
Comments