cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A038763 Triangular matrix arising in enumeration of catafusenes, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 4, 3, 1, 7, 15, 9, 1, 10, 36, 54, 27, 1, 13, 66, 162, 189, 81, 1, 16, 105, 360, 675, 648, 243, 1, 19, 153, 675, 1755, 2673, 2187, 729, 1, 22, 210, 1134, 3780, 7938, 10206, 7290, 2187, 1, 25, 276, 1764, 7182, 19278, 34020, 37908, 24057, 6561, 1, 28, 351, 2592, 12474, 40824, 91854, 139968, 137781, 78732, 19683
Offset: 0

Views

Author

N. J. A. Sloane, May 03 2000

Keywords

Comments

Triangle T(n,k), 0<=k<=n, read by rows, given by [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...] DELTA [1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Aug 10 2005
Triangle read by rows, n-th row = X^(n-1) * [1, 1, 0, 0, 0, ...] where X = an infinite bidiagonal matrix with (1,1,1,...) in the main diagonal and (3,3,3,...) in the subdiagonal; given row 0 = 1. - Gary W. Adamson, Jul 19 2008
Fusion of polynomial sequences P and Q given by p(n,x)=(x+2)^n and q(n,x)=(2x+1)^n; see A193722 for the definition of fusion of two sequences of polynomials or triangular arrays. - Clark Kimberling, Aug 04 2011

Examples

			Triangle begins:
  1;
  1,  1;
  1,  4,   3;
  1,  7,  15,   9;
  1, 10,  36,  54,   27;
  1, 13,  66, 162,  189,   81;
  1, 16, 105, 360,  675,  648,  243;
  1, 19, 153, 675, 1755, 2673, 2187, 729;
		

Crossrefs

Programs

  • Magma
    A038763:= func< n,k | n eq 0 select 1 else 3^(k-1)*(3*n-2*k)*Binomial(n,k)/n >;
    [A038763(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Dec 27 2023
    
  • Mathematica
    A038763[n_,k_]:= If[n==0, 1, 3^(k-1)*(3*n-2*k)*Binomial[n,k]/n];
    Table[A038763[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Dec 27 2023 *)
  • PARI
    T(n,k) = if ((n<0) || (k<0), return(0)); if ((n==0) && (k==0), return(1)); if (n==1, if (k<=1, return(1))); T(n-1,k) + 3*T(n-1,k-1);
    tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", "))); \\ Michel Marcus, Jul 25 2023
    
  • SageMath
    def A038763(n,k): return 1 if (n==0) else 3^(k-1)*(3*n-2*k)*binomial(n,k)/n
    flatten([[A038763(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Dec 27 2023

Formula

T(n, 0)=1; T(1, 1)=1; T(n, k)=0 for k>n; T(n, k) = T(n-1, k-1)*3 + T(n-1, k) for n >= 2.
Sum_{k=0..n} T(n,k) = A081294(n). - Philippe Deléham, Sep 22 2006
T(n, k) = A136158(n, n-k). - Philippe Deléham, Dec 17 2007
G.f.: (1-2*x*y)/(1-(3*y+1)*x). - R. J. Mathar, Aug 11 2015
From G. C. Greubel, Dec 27 2023: (Start)
T(n, 0) = A000012(n).
T(n, 1) = A016777(n-1).
T(n, 2) = A062741(n-1).
T(n, 3) = 9*A002411(n-2).
T(n, 4) = 27*A001296(n-3).
T(n, 5) = 81*A051836(n-4).
T(n, n) = A133494(n).
T(n, n-1) = A006234(n+2).
T(n, n-2) = A080420(n-2).
T(n, n-3) = A080421(n-3).
T(n, n-4) = A080422(n-4).
T(n, n-5) = A080423(n-5).
T(2*n, n) = 4*A098399(n-1) + (2/3)*[n=0].
Sum_{k=0..n} (-1)^k*T(n, k) = A000007(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A006138(n-1) + (2/3)*[n=0].
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = A110523(n-1) + (4/3)*[n=0]. (End)

Extensions

More terms from Michel Marcus, Jul 25 2023

A214733 a(n) = -a(n-1) - 3*a(n-2) with n>1, a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, -1, -2, 5, 1, -16, 13, 35, -74, -31, 253, -160, -599, 1079, 718, -3955, 1801, 10064, -15467, -14725, 61126, -16951, -166427, 217280, 282001, -933841, 87838, 2713685, -2977199, -5163856, 14095453, 1396115, -43682474, 39494129, 91553293, -210035680
Offset: 0

Views

Author

Roman Witula, Jul 27 2012

Keywords

Comments

The sequence a(n) is conjugate with A110523 by the following alternative relations: either ((-1 + i*sqrt(11))/2)^n = A110523(n) + a(n)*(-1 + i*sqrt(11))/2, or ((-1 - i*sqrt(11))/2)^n = A110523(n) + a(n)*(-1 - i*sqrt(11))/2 (see also comments to A110523, where these relations and many other facts on a(n) is presented).
Apart from signs, the Lucas U(P=1,Q=3)-sequence. - R. J. Mathar, Oct 24 2012
This is the Lucas U(-1, 3) sequence. (V_n(-1, 3))^2 + 11*(U_n(-1, 3))^2 = 4*Q^n = 4*3^n. For the special case where |U_n(-1, 3)| = 1, then, by the Lucas sequence identity U_2*n = U_n*V_n, we have (U_2*n(-1, 3))^2 + 11 = 4*3^n, true for n = 1, 2, 5, U_n = 1, -1, 1 and U_2*n = -1, 5, -31. E.g., (-31)^2 + 11 = 972 = 4*3^5. - Raphie Frank, Dec 09 2015

References

  • Roman Witula, On Some Applications of Formulae for Unimodular Complex Numbers, Jacek Skalmierski's Press, Gliwice 2011.

Crossrefs

Programs

  • Magma
    [n le 2 select n-1 else -Self(n-1)-3*Self(n-2): n in [1..40]]; // Vincenzo Librandi, Dec 10 2015
    
  • Mathematica
    LinearRecurrence[{-1, -3}, {0, 1}, 40] (* T. D. Noe, Jul 30 2012 *)
  • PARI
    concat(0,Vec(1/(1+x+3*x^2)+O(x^99))) \\ Charles R Greathouse IV, Oct 01 2012
    
  • SageMath
    [(-1)^(n-1)*round(3^((n-1)/2)*chebyshev_U(n-1, 1/(2*sqrt(3)))) for n in range(41)] # G. C. Greubel, Dec 28 2023

Formula

a(n) = - a(n-1) - 3*a(n-2).
a(n) = (-1)^n*(i*sqrt(11)/11)*(((1 + i*sqrt(11))/2)^n - ((1 - i*sqrt(11))/2)^n).
G.f.: x/(1 + x + 3*x^2).
G.f.: Q(0) -1, where Q(k) = 1 - 3*x^2 - (k+2)*x + x*(k+1 + 3*x)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 07 2013
From G. C. Greubel, Dec 28 2023: (Start)
a(n) = (-1)^(n-1)*3^((n-1)/2)*ChebyshevU(n-1, 1/(2*sqrt(3))).
a(n) = (-1)^n * A106852(n-1).
E.g.f.: (2/sqrt(11))*exp(-x/2)*sin(sqrt(11)*x/2). (End)

A116412 Riordan array ((1+x)/(1-2x),x(1+x)/(1-2x)).

Original entry on oeis.org

1, 3, 1, 6, 6, 1, 12, 21, 9, 1, 24, 60, 45, 12, 1, 48, 156, 171, 78, 15, 1, 96, 384, 558, 372, 120, 18, 1, 192, 912, 1656, 1473, 690, 171, 21, 1, 384, 2112, 4608, 5160, 3225, 1152, 231, 24, 1, 768, 4800, 12240, 16584, 13083, 6219, 1785, 300, 27, 1, 1536, 10752
Offset: 0

Views

Author

Paul Barry, Feb 13 2006

Keywords

Comments

Row sums are A003688. Diagonal sums are A116413. Product of A007318 and A116413 is A116414. Product of A007318 and A105475.
Subtriangle of triangle given by (0, 3, -1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Jan 18 2012

Examples

			Triangle begins
1,
3, 1,
6, 6, 1,
12, 21, 9, 1,
24, 60, 45, 12, 1,
48, 156, 171, 78, 15, 1
Triangle T(n,k), 0<=k<=n, given by (0, 3, -1, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, ...) begins :
1
0, 1
0, 3, 1
0, 6, 6, 1
0, 12, 21, 9, 1
0, 24, 60, 45, 12, 1
0, 48, 156, 171, 78, 15, 1
... - _Philippe Deléham_, Jan 18 2012
		

Crossrefs

Programs

  • Mathematica
    With[{n = 10}, DeleteCases[#, 0] & /@ CoefficientList[Series[(1 + x)/(1 - (y + 2) x - y x^2), {x, 0, n}, {y, 0, n}], {x, y}]] // Flatten (* Michael De Vlieger, Apr 25 2018 *)

Formula

Number triangle T(n,k)=sum{j=0..n, C(k+1,j)*C(n-j,k)2^(n-k-j)}
From Vladimir Kruchinin, Mar 17 2011: (Start)
T((m+1)*n+r-1, m*n+r-1) * r/(m*n+r) = sum(k=1..n, k/n * T((m+1)*n-k-1, m*n-1) * T(r+k-1,r-1)), n>=m>1.
T(n-1,m-1) = m/n * sum(k=1..n-m+1, k*A003945(k-1)*T(n-k-1,m-2)), n>=m>1. (End)
G.f.: (1+x)/(1-(y+2)*x -y*x^2). - Philippe Deléham, Jan 18 2012
Sum_{k, 0<=k<=n} T(n,k)*x^k = A104537(n), A110523(n), (-2)^floor(n/2), A057079(n), A003945(n), A003688(n+1), A123347(n), A180035(n) for x = -4, -3, -2, -1, 0, 1, 2, 3 respectively. - Philippe Deléham, Jan 18 2012
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) + T(n-2,k-1), T(0,0) = 1, T(1,0) = 3, T(1,1) = 1, T(2,0) = T(2,1) = 6, T(2,2) = 1, T(n,k) = 0 if k>n or if k<0. - Philippe Deléham, Oct 31 2013

A110522 Riordan array (1/(1+x), x*(1-2*x)/(1+x)^2).

Original entry on oeis.org

1, -1, 1, 1, -5, 1, -1, 12, -9, 1, 1, -22, 39, -13, 1, -1, 35, -115, 82, -17, 1, 1, -51, 270, -344, 141, -21, 1, -1, 70, -546, 1106, -773, 216, -25, 1, 1, -92, 994, -2954, 3199, -1466, 307, -29, 1, -1, 117, -1674, 6888, -10791, 7461, -2487, 414, -33, 1, 1, -145, 2655, -14484, 31179, -30645, 15060, -3900, 537, -37, 1
Offset: 0

Views

Author

Paul Barry, Jul 24 2005

Keywords

Comments

Inverse of A110519.
Product of inverse binomial transform matrix (1/(1+x), x/(1+x)) and (1, x*(1-3*x)) (A110517).

Examples

			Rows begin
   1;
  -1,    1;
   1,   -5,    1;
  -1,   12,   -9,    1;
   1,  -22,   39,  -13,    1;
  -1,   35, -115,   82,  -17,    1;
		

Crossrefs

Cf. A110519 (inverse), A110523 (row sums), A110524 (diagonal sums).

Programs

  • Magma
    A110522:= func< n,k | (-1)^(n+k)*(&+[ 3^(j-k)*Binomial(k,j-k)*Binomial(n,j) : j in [0..n]] ) >;
    [A110522(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Dec 28 2023
    
  • Mathematica
    T[n_,k_]:= Sum[(-1)^(n-j)*(-3)^(j-k)*Binomial[k, j- k]*Binomial[n, j], {j,0,n}];
    Table[T[n,k], {n,0,20}, {k,0,n}]//Flatten (* G. C. Greubel, Aug 30 2017 *)
  • PARI
    A110522(n,k) = if(n==0, 1, sum(j=0,n, (-1)^(n-j)*(-3)^(j-k)*binomial(n,j)*binomial(k, j-k)));
    for(n=0,12, for(k=0,n, print1(A110522(n,k), ", "))) \\ G. C. Greubel, Aug 30 2017; Dec 28 2023
    
  • SageMath
    def A110522(n,k): return (-1)^(n+k)*sum(3^(j-k)*binomial(k,j-k)*binomial(n,j) for j in range(n+1))
    flatten([[A110522(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Dec 28 2023

Formula

Number triangle T(n, k) = Sum_{j=0..n} (-1)^(n-j)*C(n, j)*(-3)^(j-k)*C(k, j-k).
T(n, k) = Sum_{j=0..n} Sum_{i=0..k} C(k, i)*C(n+k-i-j-1, n-k-i-j)*(-1)^(n-k)*2^i.
Sum_{k=0..n} T(n, k) = A110523(n) (row sums).
Sum_{k=0..floor(n/2)} T(n-k, k) = A110524(n) (diagonal sums).
T(n,k) = T(n-1,k-1) - 2*T(n-1,k) - T(n-2,k) - 2*T(n-2,k-1), T(0,0) = 1, T(1,0) = -1, T(1,1) = 1, T(n,k) = 0 if k < 0 or if k > n. - Philippe Deléham, Jan 12 2014
From G. C. Greubel, Dec 28 2023: (Start)
T(n, 0) = A033999(n).
T(n, 1) = (-1)^(n-1)*A000326(n), n >= 1.
T(n, n) = 1.
T(n, n-1) = -A016813(n-1), n >= 1.
T(n, n-2) = A236267(n-2), n >= 2.
Sum_{k=0..n} (-1)^k*T(n, k) = (-1)^n*A052924(n).
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = (-1)^n*A078005(n). (End)

A103646 G.f.: 9*(3x+1)/(1+2x-6x^2-27x^3).

Original entry on oeis.org

9, 9, 36, 225, 9, 2304, 1521, 11025, 49284, 8649, 576081, 230400, 3229209, 10478169, 4639716, 140778225, 29192409, 911556864, 2153052801, 1951430625, 33627490884, 2586027609, 249281516961, 424895385600, 715721076009, 7848531119529
Offset: 0

Views

Author

Creighton Dement, Feb 12 2005

Keywords

Comments

A floretion-generated sequence of squares. This sequence is related to several other sequences of squares.
Floretion Algebra Multiplication Program, FAMP Code: 4ibaseiseq[ x*(+ 'i + 'j + i' + j' + 'ii' + 'jj' + 'ij' + 'ji' + e) ] where x is the sum of all (16) floretion basis vectors.

Crossrefs

Programs

  • Mathematica
    CoefficientList[ Series[9(3x + 1)/(1 + 2x - 6x^2 - 27x^3), {x, 0, 25}], x] (* Robert G. Wilson v, Feb 12 2005 *)
    LinearRecurrence[{-2,6,27},{9,9,36},40] (* Harvey P. Dale, Mar 14 2016 *)

Formula

a(n+3) = -2a(n+2) + 6a(n+1) + 27a(n), a(0) = 9, a(1) = 9, a(2) = 36
a(n) = 9*A103644(n).
4*3^(n+1) = 2*A103644(n) + a(n) + A103645(n) = 11*A103644(n) + A103645(n).
a(n) = A110523(n+2)^2. - R. J. Mathar, Sep 11 2019

Extensions

Corrected and extended by Robert G. Wilson v, Feb 12 2005
Showing 1-5 of 5 results.