cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A106852 Expansion of 1/(1-x*(1-3*x)).

Original entry on oeis.org

1, 1, -2, -5, 1, 16, 13, -35, -74, 31, 253, 160, -599, -1079, 718, 3955, 1801, -10064, -15467, 14725, 61126, 16951, -166427, -217280, 282001, 933841, 87838, -2713685, -2977199, 5163856, 14095453, -1396115, -43682474, -39494129, 91553293, 210035680, -64624199, -694731239, -500858642
Offset: 0

Views

Author

Paul Barry, May 08 2005

Keywords

Comments

Row sums of Riordan array (1, x*(1-3*x)). In general, Sum_{k=0..n} (-1)^(n-k)*binomial(k,n-k)*r^(n-k) yields the row sums of the Riordan array (1, x(1-r*x)).
Row sums of Riordan array (1/(1+3*x^2), x/(1+3*x^2)). - Paul Barry, Sep 10 2005
See A214733 for a differently signed version of this sequence. - Peter Bala, Nov 21 2016

Crossrefs

Cf. A214733.

Programs

  • Magma
    I:=[1,1]; [n le 2 select I[n] else Self(n-1) - 3*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 14 2018
  • Mathematica
    CoefficientList[Series[1/(1 - x (1 - 3 x)), {x, 0, 40}], x] (* Vincenzo Librandi, Oct 07 2013 *)
    LinearRecurrence[{1,-3},{1,1},40] (* Harvey P. Dale, Apr 02 2016 *)
  • PARI
    a(n)=([0,1; -3,1]^n*[1;1])[1,1] \\ Charles R Greathouse IV, Nov 21 2016
    
  • PARI
    x='x+O('x^30); Vec(1/(1-x+3*x^2)) \\ G. C. Greubel, Jan 14 2018
    
  • Sage
    [lucas_number1(n,1,+3) for n in range(1, 40)] # Zerinvary Lajos, Apr 22 2009
    

Formula

From Paul Barry, Sep 10 2005: (Start)
G.f.: 1/(1-x+3*x^2).
a(n) = 2*sqrt(33)*3^(n/2)*cos((n+1)*arctan(sqrt(11)/11)-pi*n/2)/11.
a(n) = 3^(n/2)(cos(-n*arccot(sqrt(11)/11))-sqrt(11)*sin(-n*arccot(sqrt(11)/11))/11).
a(n) = ((1+sqrt(-11))^(n+1)-(1-sqrt(-11))^(n+1))/(2^(n+1)sqrt(-11)).
a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(k, n-k)*3^(n-k) = Sum_{k=0..n} A109466(n,k)*3^(n-k).
a(n) = Sum_{k=0..n} C((n+k)/2, k)*(-3)^((n-k)/2)*(1+(-1)^(n-k))/2.
a(n) = Sum_{k=0..floor(n/2)} C(n-k, k)(-3)^k. (End)
a(n) = a(n-1) - 3*a(n-2), a(0)=1, a(1)=1. - Philippe Deléham, Oct 21 2008
G.f.: Q(0)/x -1/x, where Q(k) = 1 - 3*x^2 + (k+2)*x - x*(k+1 - 3*x)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 07 2013
G.f.: Sum_{n >= 0} x^n * Product_{k = 1..n} (k - 3*x)/(1 + k*x). - Peter Bala, Jul 06 2025

A110523 Expansion of (1 + x)/(1 + x + 3*x^2).

Original entry on oeis.org

1, 0, -3, 3, 6, -15, -3, 48, -39, -105, 222, 93, -759, 480, 1797, -3237, -2154, 11865, -5403, -30192, 46401, 44175, -183378, 50853, 499281, -651840, -846003, 2801523, -263514, -8141055, 8931597, 15491568, -42286359, -4188345, 131047422, -118482387, -274659879, 630107040, 193872597
Offset: 0

Views

Author

Paul Barry, Jul 24 2005

Keywords

Comments

Row sums of number triangle A110522.
The sequence a(n) is conjugate with A214733 since the following alternative relations: either ((-1 + i*sqrt(11))/2)^n = a(n) + A214733(n)*(-1 + i*sqrt(11))/2 or ((-1 - i*sqrt(11))/2)^n = a(n) + A214733(n)*(-1 - i*sqrt(11))/2. We have a(n+1) = -3*A214733(n), A214733(n+1) = a(n) - A214733(n). We note that sequences A110512 and A001607 are conjugated in a similar way. The above relations are connected with the Gauss sums, for example if e := exp(i*2Pi/11) then e + e^3 + e^4 + e^5 + e^9 = (-1 + i*sqrt(11))/2, and e^2 + e^6 + e^7 + e^8 + e^10 = (-1 - i*sqrt(11))/2, which is equivalent to the system of sums: Sum_{k=1..5} cos(2Pi*k/11) = -1/2 and Sum_{k=1..5} sin(2Pi*k/11) = sqrt(11)/2, and which is equivalent to the system of products: P_{k=1..5} cos(2Pi*k/11) = -1/32 and P_{k=1..5} sin(2Pi*k/11) = sqrt(11)/32 - for details see Witula's book. Lastly we note that ((-1 + i*sqrt(11))/2)^n + ((-1 - i*sqrt(11))/2)^n = 2*a(n) - A214733(n). - Roman Witula, Jul 27 2012

References

  • Roman Witula, On Some Applications of Formulae for Unimodular Complex Numbers, Jacek Skalmierski's Press, Gliwice 2011.

Crossrefs

Programs

  • Magma
    [n le 2 select 2-n else -(Self(n-1) +3*Self(n-2)): n in [1..50]]; // G. C. Greubel, Dec 28 2023
    
  • Mathematica
    CoefficientList[Series[(1+x)/(1+x+3*x^2), {x,0,50}], x] (* G. C. Greubel, Aug 30 2017 *)
    LinearRecurrence[{-1,-3},{1,0},40] (* Harvey P. Dale, Jul 02 2022 *)
  • PARI
    my(x='x+O('x^50)); Vec((1+x)/(1+x+3*x^2)) \\ G. C. Greubel, Aug 30 2017
    
  • SageMath
    @CachedFunction # a = A110523
    def a(n): return 1-n if n<2 else -a(n-1) -3*a(n-2)
    [a(n) for n in range(41)] # G. C. Greubel, Dec 28 2023

Formula

a(n) = Sum_{k=0..n} Sum_{j=0..n} (-1)^(n-j)*C(n, j)*(-3)^(j-k)*C(k, j-k).
From Roman Witula, Jul 27 2012: (Start)
a(n+2) + a(n+1) + 3*a(n) = 0.
a(n+1) = (-1)^n*(3*i*sqrt(11)/11)*(((1 + i*sqrt(11))/2)^(n-1) - ((1 - i*sqrt(11))/2)^(n-1)). (End)
From G. C. Greubel, Dec 28 2023: (Start)
a(n) = (-1)^n*3^((n-1)/2)*( sqrt(3)*ChebyshevU(n, 1/(2*sqrt(3))) - ChebyshevU(n-1, 1/(2*sqrt(3))) ).
a(n) = A106852(n) - A106852(n-1).
a(n) = (-1)^n*( A214733(n+1) + A214733(n) ). (End)
E.g.f.: exp(-x/2)*(sqrt(11)*cos(sqrt(11)*x/2) + sin(sqrt(11)*x/2))/sqrt(11). - Stefano Spezia, Jul 27 2025

A226075 Expansion of (eta(q) * eta(q^11))^2 + 2 * (eta(q^2) * eta(q^22))^2 in powers of q.

Original entry on oeis.org

1, 0, -1, -2, 1, 0, -2, 4, -2, 0, 1, 2, 4, 0, -1, -4, -2, 0, 0, -2, 2, 0, -1, -4, -4, 0, 5, 4, 0, 0, 7, 0, -1, 0, -2, 4, 3, 0, -4, 4, -8, 0, -6, -2, -2, 0, 8, 4, -3, 0, 2, -8, -6, 0, 1, -8, 0, 0, 5, 2, 12, 0, 4, 8, 4, 0, -7, 4, 1, 0, -3, -8, 4, 0, 4, 0, -2, 0
Offset: 1

Views

Author

Michael Somos, May 25 2013

Keywords

Examples

			G.f. = q - q^3 - 2*q^4 + q^5 - 2*q^7 + 4*q^8 - 2*q^9 + q^11 + 2*q^12 + 4*q^13 + ...
		

Crossrefs

Programs

  • Magma
    Basis( CuspForms( Gamma0(22), 2), 79)[1];
  • Mathematica
    a[ n_] := SeriesCoefficient[ q (QPochhammer[ q] QPochhammer[ q^11])^2 + 2 q^2 ( QPochhammer[ q^2] QPochhammer[ q^22])^2, {q, 0, n}]; (* Michael Somos, Apr 25 2015 *)
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^11 + A))^2 + 2 * x * (eta(x^2 + A) * eta(x^22 + A))^2, n))};
    
  • Sage
    CuspForms( Gamma0(22), 2, prec=79).0;
    

Formula

a(n) is multiplicative with a(11^e) = 1, a(p^e) = a(p) * a(p^(e-1)) - p * a(p^(e-2)) if p != 11.
G.f. is a period 1 Fourier series which satisfies f(-1 / (22 t)) = 22 (t/i)^2 f(t) where q = exp(2 Pi i t).
a(4*n + 2) = 0. a(4*n) = -2 * A006571(n). a(2^n) = A090132(n). a(3^n) = A214733(n+1).

A228440 Numbers n dividing u(n), where the Lucas sequence is defined u(i) = u(i-1) - 3*u(i-2) with initial conditions u(0)=0, u(1)=1.

Original entry on oeis.org

1, 11, 121, 253, 1331, 2783, 5819, 11891, 14641, 29161, 30613, 64009, 130801, 133837, 161051, 273493, 320771, 336743, 558877, 640343, 670703, 704099, 895873, 1438811, 1472207, 1771561, 3008423, 3078251, 3528481, 3544453, 3704173, 6147647, 6290339, 7027801
Offset: 1

Views

Author

Thomas M. Bridge, Nov 02 2013

Keywords

Comments

Since the absolute value of the discriminant of the characteristic polynomial is prime (=11), the sequence contains every nonnegative integer power of 11 (A001020 is subsequence). Other terms are formed on multiplication of 11^k by sporadic primes.

Examples

			u(1)=1 and u(11)=253. Clearly n divides u(n) for these terms.
		

Crossrefs

Cf. A214733 (Lucas sequence u(n) ignoring sign).
Cf. A001020 (powers of 11).

Programs

  • Mathematica
    nn = 10000; s = LinearRecurrence[{1, -3}, {1, 1}, nn]; t = {}; Do[
    If[Mod[s[[n]], n] == 0, AppendTo[t, n]], {n, nn}]; t (* T. D. Noe, Nov 06 2013 *)

Extensions

a(27)-a(34) from Lars Blomberg, Feb 15 2016
Showing 1-4 of 4 results.