A110594 a(1) = 4, a(2) = 12, for n>1: a(n) = 3*4^(n-1).
4, 12, 48, 192, 768, 3072, 12288, 49152, 196608, 786432, 3145728, 12582912, 50331648, 201326592, 805306368, 3221225472, 12884901888, 51539607552, 206158430208, 824633720832, 3298534883328, 13194139533312, 52776558133248
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (4).
Programs
-
GAP
Concatenation([4],List([2..25],n->3*4^(n-1))); # Muniru A Asiru, Oct 21 2018
-
Magma
[4] cat [3*4^(n-1): n in [2..30]]; // Vincenzo Librandi, May 29 2014
-
Maple
seq(coeff(series(4*x*(1-x)/(1-4*x),x,n+1), x, n), n = 1 .. 25); # Muniru A Asiru, Oct 21 2018
-
Mathematica
CoefficientList[Series[4 (1 - x)/(1 - 4 x), {x, 0, 40}], x] (* Vincenzo Librandi, May 29 2014 *)
-
PARI
x='x+O('x^50); Vec(4*x*(1 - x)/(1 - 4*x)) \\ G. C. Greubel, Sep 01 2017
Formula
a(n) = A002001(n), n>1. - R. J. Mathar, Aug 18 2008
G.f.: 4*x*(1 - x)/(1 - 4*x). - Vincenzo Librandi, May 29 2014
Extensions
Definition corrected by R. J. Mathar, Aug 18 2008