cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A164346 a(n) = 3 * 4^n.

Original entry on oeis.org

3, 12, 48, 192, 768, 3072, 12288, 49152, 196608, 786432, 3145728, 12582912, 50331648, 201326592, 805306368, 3221225472, 12884901888, 51539607552, 206158430208, 824633720832, 3298534883328, 13194139533312, 52776558133248, 211106232532992, 844424930131968
Offset: 0

Views

Author

Klaus Brockhaus, Aug 13 2009

Keywords

Comments

Binomial transform of A000244 without initial 1.
Second binomial transform of A007283.
Third binomial transform of A010701.
Inverse binomial transform of A005053 without initial 1.
First differences of A024036. - Omar E. Pol, Feb 16 2013

Crossrefs

Cf. A000302 (powers of 4), A000244 (powers of 3), A007283 (3*2^n), A010701 (all 3's), A005053, A002001, A096045, A140660 (3*4^n+1), A002023 (6*4^n), A002063(9*4^n), A056120, A084509.

Programs

Formula

a(n) = 4*a(n-1) for n > 1; a(0) = 3.
G.f.: 3/(1-4*x).
a(n) = A002001(n+1). a(n) = A096045(n)+2. a(n) = A140660(n)-1.
a(n) = A002023(n)/2. a(n) = A002063(n)/3. a(n) = A056120(n+3)/9.
Apparently a(n) = A084509(n+3)/2.
a(n) = A110594(n+1), n>1. - R. J. Mathar, Aug 17 2009
a(n) = 3*A000302(n). - Omar E. Pol, Feb 18 2013
a(n) = A000079(2*n) + A000079(2*n+1). - M. F. Hasler, Jul 28 2015
E.g.f.: 3*exp(4*x). - G. C. Greubel, Sep 15 2017

A110591 Number of digits in base-4 representation of n.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
Offset: 0

Views

Author

Jonathan Vos Post, Jul 29 2005

Keywords

Comments

Number of digits in A007090(n).
In terms of the repetition convolution operator #, where (sequence A) # (sequence B) = the sequence consisting of A(n) copies of B(n), this sequence is the repetition convolution A110594 # n. Over the set of positive infinite integer sequences, # gives a nonassociative noncommutative groupoid (magma) with a left identity (A000012) but no right identity, where the left identity is also a right nullifier and idempotent. For any positive integer constant c, the sequence c*A000012 = (c,c,c,c,...) is also a right nullifier; for c = 1, this is A000012; for c = 3 this is A010701.

Crossrefs

Programs

  • Haskell
    import Data.List (unfoldr)
    a110591 0 = 1
    a110591 n = length $
       unfoldr (\x -> if x == 0 then Nothing else Just (x, x `div` 4)) n
    -- Reinhard Zumkeller, Apr 22 2011
  • Maple
    A110592 := proc(n)
        if n = 0 then
            1;
        else
            1+floor(log[4](n)) ;
        end if;
    end proc:
    seq(A110592(n),n=0..50) ; # R. J. Mathar, Sep 02 2020
  • Mathematica
    a[n_] := If[n == 0, 1, Floor[Log[4, n]] + 1];
    a /@ Range[0, 100] (* Jean-François Alcover, Nov 24 2020 *)

Formula

G.f.: 1 + (1/(1 - x))*Sum_{k>=0} x^(4^k). - Ilya Gutkovskiy, Jan 08 2017
a(n) = floor(log_4(n)) + 1 for n >= 1. - Petros Hadjicostas, Dec 12 2019

A092898 Expansion of (1 - 4*x + 4*x^2 - 4*x^3)/(1 - 4*x).

Original entry on oeis.org

1, 0, 4, 12, 48, 192, 768, 3072, 12288, 49152, 196608, 786432, 3145728, 12582912, 50331648, 201326592, 805306368, 3221225472, 12884901888, 51539607552, 206158430208, 824633720832, 3298534883328, 13194139533312, 52776558133248
Offset: 0

Views

Author

Paul Barry, Mar 12 2004

Keywords

Comments

Partial sums are A092896.

Crossrefs

Programs

  • Magma
    [1,0,4] cat [3*4^(n-2): n in [3..30]]; // G. C. Greubel, Feb 21 2021
  • Maple
    a:= n-> 3*4^n/16+13*0^n/16+add(binomial(n,k)*(-1)^k*(3*k/4+k*(k-1)/2), k=0..n):
    seq(a(n), n=0..30);  # Alois P. Heinz, Nov 03 2018
  • Mathematica
    Join[{1, 0, 4}, LinearRecurrence[{4}, {12}, 22]] (* Jean-François Alcover, Sep 16 2019 *)
  • PARI
    Vec((1 -4*x +4*x^2 -4*x^3)/(1-4*x) + O(x^30)) \\ Andrew Howroyd, Nov 03 2018
    
  • Sage
    [1,0,4]+[3*4^(n-2) for n in (3..30)] # G. C. Greubel, Feb 21 2021
    

Formula

a(n+2) = 4 * A002001(n).
a(n) = (3*4^n + 13*0^n)/16 + Sum_{k=0..n} binomial(n, k)*(-1)^k*(3*k/4 + k*(k-1)/2).
G.f.: 1 - x + 8*x^2 + 2*x/G(0), where G(k) = 1 + 1/(1 - x*(3*k+4)/(x*(3*k+7) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 11 2013
a(n) = A110594(n-1) for n >= 2. - Georg Fischer, Nov 03 2018
From G. C. Greubel, Feb 21 2021: (Start)
a(n) = (3*4^n +16*[n=2] -12*[n=1] +13*0^n)/16.
E.g.f.: (13 -12*x + 8*x^2 + 3*exp(4*x))/16. (End)

A110595 a(1)=5. For n > 1, a(n) = 4*5^(n-1) = A005054(n).

Original entry on oeis.org

5, 20, 100, 500, 2500, 12500, 62500, 312500, 1562500, 7812500, 39062500, 195312500, 976562500, 4882812500, 24414062500, 122070312500, 610351562500, 3051757812500, 15258789062500, 76293945312500, 381469726562500
Offset: 1

Views

Author

Jonathan Vos Post, Jul 29 2005

Keywords

Comments

a(n) is the number of n-digit integers that contain only even digits (A014263). - Bernard Schott, Nov 11 2022

Crossrefs

Programs

  • Mathematica
    Join[{5},NestList[5#&,20,20]] (* Harvey P. Dale, Jun 19 2013 *)
    Rest[CoefficientList[Series[5 x (1 - x)/(1 - 5 x), {x,0,50}], x]] (* G. C. Greubel, Sep 01 2017 *)
  • PARI
    my(x='x+O('x^50)); Vec(5*x*(1-x)/(1-5*x)) \\ G. C. Greubel, Sep 01 2017

Formula

O.g.f.: 5*x*(1-x)/(1-5*x). - Better definition from R. J. Mathar, May 13 2008
Sum_{n>=1} 1/a(n) = 21/80. - Bernard Schott, Nov 11 2022

Extensions

Better definition from R. J. Mathar, May 13 2008
Incorrect comment removed by Michel Marcus, Nov 11 2022

A383369 Population of elementary triangular automaton rule 90 at generation n, starting from a lone 1 cell at generation 0.

Original entry on oeis.org

1, 4, 6, 12, 6, 24, 24, 48, 6, 24, 36, 72, 24, 96, 96, 192, 6, 24, 36, 72, 36, 144, 144, 288, 24, 96, 144, 288, 96, 384, 384, 768, 6, 24, 36, 72, 36, 144, 144, 288, 36, 144, 216, 432, 144, 576, 576, 1152, 24, 96, 144, 288, 144, 576, 576, 1152, 96, 384, 576, 1152, 384, 1536, 1536, 3072, 6
Offset: 0

Views

Author

Paul Cousin, Apr 24 2025

Keywords

Comments

An Elementary Triangular Automaton (ETA) is a cellular automaton in the triangular grid where cells hold binary states and rules are local to the first neighborhood. There are 256 possible ETA rules.
Rule 90 (1011010 in binary):
-----------------------------------------------
|state of the cell |1|1|1|1|0|0|0|0|
|sum of the neighbors' states |3|2|1|0|3|2|1|0|
|cell's next state |0|1|0|1|1|0|1|0|
-----------------------------------------------
This is one of the 4 ETA rules (85, 90, 165 and 170) that replicates the pattern given as initial condition.

Examples

			Written as an irregular triangle with row lengths A000079, starting from n=1, the sequence begins:
  4;
  6, 12;
  6, 24, 24, 48;
  6, 24, 36, 72, 24, 96, 96, 192;
  6, 24, 36, 72, 36, 144, 144, 288, 24, 96, 144, 288, 96, 384, 384, 768;
...
It appears that the right border gives A110594.
		

Crossrefs

Pattern replicating ETA rules: A275667 (rule 170).
A247640 is a bisection.
A246035 is the analog on the square cells.

A166976 Array of A002450 in the top row and higher-order differences in subsequent rows, read by antidiagonals.

Original entry on oeis.org

0, 1, 1, 3, 4, 5, 9, 12, 16, 21, 27, 36, 48, 64, 85, 81, 108, 144, 192, 256, 341, 243, 324, 432, 576, 768, 1024, 1365, 729, 972, 1296, 1728, 2304, 3072, 4096, 5461, 2187, 2916, 3888, 5184, 6912, 9216, 12288, 16384, 21845, 6561
Offset: 0

Views

Author

Paul Curtz, Oct 26 2009

Keywords

Examples

			The array starts:
0,   1,   5,  21,  85, 341,1365,5461,21845,87381,349525,    A002450
1,   4,  16,  64, 256,1024,4096,16384,65536,262144,1048576, A000302
3,  12,  48, 192, 768,3072,12288,49152,196608,786432,       A002001, A164346, A110594
9,  36, 144, 576,2304,9216,36864,147456                     A002063, A055841
		

Programs

  • Maple
    A002450 := proc(n) (4^n-1)/3 ; end proc:
    A166976 := proc(n,k) option remember; if n = 0 then A002450(k) else procname(n-1,k+1)-procname(n-1,k) ; end if; end proc: # R. J. Mathar, Jul 02 2011

Formula

T(0,k) = A002450(k). T(n,k) = T(n-1,k+1) - T(n-1,k), n > 0.
Showing 1-6 of 6 results.