cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110609 a(n) = n * binomial(2*n, n-1).

Original entry on oeis.org

0, 1, 8, 45, 224, 1050, 4752, 21021, 91520, 393822, 1679600, 7113106, 29953728, 125550100, 524190240, 2181340125, 9051563520, 37467344310, 154754938800, 637982011590, 2625648168000, 10789623755820, 44277560801760, 181478535620850, 742984788858624, 3038716500907500
Offset: 0

Views

Author

Paul Barry, Jul 30 2005

Keywords

Crossrefs

Column k=1 of A110608.

Programs

  • Magma
    [0] cat [((4*n+4)*(2*n+1)*Binomial(2*n, n)/(n+2))/2: n in [0..25]]; // Vincenzo Librandi, Jan 09 2015
    
  • Maple
    with(combinat):with(combstruct):a[0]:=0:for n from 1 to 30 do a[n]:=sum((count(Composition(n*2+1),size=n)),j=1..n) od: seq(a[n], n=0..22); # Zerinvary Lajos, May 09 2007
    a:=n->sum(sum(binomial(2*n,n)/(n+1), j=1..n),k=1..n): seq(a(n), n=0..22); # Zerinvary Lajos, May 09 2007
    series(simplify(x*diff(x*diff((1-sqrt(1-4*x))/(2*x), x), x)), x, 20):
    seq(coeff(%, x, k), k=0..18); # Karol A. Penson, Apr 25 2025
  • Mathematica
    Table[CatalanNumber[n]*n^2, {n, 0, 22}] (* Zerinvary Lajos, Jul 08 2009 *)
    CoefficientList[Series[x (1 / x^2 - (1 - 6 x + 4 x^2) / ((1 - 4 x)^(3/2) x^2)) / 2, {x, 0, 30}], x] (* Vincenzo Librandi, Jan 09 2015 *)
  • PARI
    for(n=0,25, print1(n*binomial(2*n,n-1), ", ")) \\ G. C. Greubel, Sep 01 2017

Formula

a(n) = n^2*binomial(2*n, n)/(n+1) = n^2*A000108(n) = A002736(n)/(n+1).
G.f.: -(2*x*(2*x+2*sqrt(1-4*x)-3) - sqrt(1-4*x) + 1)/(2*sqrt((1 - 4*x)^3)*x). - Marco A. Cisneros Guevara, Jul 23 2011; amended by Georg Fischer, Apr 09 2020
(n+1)*(10*n-7)*a(n)+2*n*(5*n-88)*a(n-1) -4*(25*n-22)*(2*n-3)*a(n-2)=0. - R. J. Mathar, Nov 07 2012
From Ilya Gutkovskiy, Jan 20 2017: (Start)
E.g.f.: x*(BesselI(0,2*x) + 2*BesselI(1,2*x) + BesselI(2,2*x))*exp(2*x).
a(n) ~ 4^n*sqrt(n)/sqrt(Pi).
Sum_{n>=1} 1/a(n) = Pi*(2*sqrt(3) + Pi)/18 = 1.152911143694148... (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = (2/sqrt(5))*log(phi) + 2*log(phi)^2, where log(phi) = A002390. - Amiram Eldar, Feb 20 2021
G.f.: (x*(d/dx))^2 [g.f. of A000108]. - Karol A. Penson, Apr 25 2025