A110616 A convolution triangle of numbers based on A001764.
1, 1, 1, 3, 2, 1, 12, 7, 3, 1, 55, 30, 12, 4, 1, 273, 143, 55, 18, 5, 1, 1428, 728, 273, 88, 25, 6, 1, 7752, 3876, 1428, 455, 130, 33, 7, 1, 43263, 21318, 7752, 2448, 700, 182, 42, 8, 1, 246675, 120175, 43263, 13566, 3876, 1020, 245, 52, 9, 1
Offset: 0
Examples
Triangle begins: 1; 1, 1; 3, 2, 1; 12, 7, 3, 1; 55, 30, 12, 4, 1; 273, 143, 55, 18, 5, 1; 1428, 728, 273, 88, 25, 6, 1; 7752, 3876, 1428, 455, 130, 33, 7, 1; 43263, 21318, 7752, 2448, 700, 182, 42, 8, 1; 246675, 120175, 43263, 13566, 3876, 1020, 245, 52, 9, 1; ... From _Peter Bala_, Feb 04 2025: (Start) The transposed array factorizes as an infinite product of upper triangular arrays: / 1 \^T /1 \^T /1 \^T / 1 \^T | 1 1 | | 1 1 | | 0 1 | | 0 1 | | 3 2 1 | = | 2 1 1 | | 0 1 1 | | 0 0 1 | ... |12 7 3 1 | | 5 2 1 1 | | 0 2 1 1 | | 0 0 1 1 | |55 30 12 4 1| |14 5 2 1 1| | 0 5 2 1 1 | | 0 0 2 1 1 | |... | |... | |... | |... | where T denotes transposition and [1, 1, 2, 5, 14,...] is the sequence of Catalan numbers A000108. (End)
Links
- Peter Bala, Factorisations of some Riordan arrays as infinite products
- Paul Barry, Notes on Riordan arrays and lattice paths, arXiv:2504.09719 [math.CO], 2025. See pp. 27, 29.
- Paul Barry, d-orthogonal polynomials, Fuss-Catalan matrices and lattice paths, arXiv:2505.16718 [math.CO], 2025. See p. 21.
- Naiomi Cameron and J. E. McLeod, Returns and Hills on Generalized Dyck Paths, Journal of Integer Sequences, Vol. 19, 2016, #16.6.1.
- V. E. Hoggatt, Jr. and M. Bicknell, Catalan and related sequences arising from inverses of Pascal's triangle matrices, Fib. Quart., 14 (1976), 395-405.
- Sheng-Liang Yang and L. J. Wang, Taylor expansions for the m-Catalan numbers, Australasian Journal of Combinatorics, Volume 64(3) (2016), Pages 420-431.
Crossrefs
Programs
-
Mathematica
Table[(k + 1) Binomial[3 n - 2 k, 2 n - k]/(2 n - k + 1), {n, 0, 9}, {k, 0, n}] // Flatten (* Michael De Vlieger, Jun 28 2017 *)
-
Maxima
T(n,k):=((k+1)*binomial(3*n-2*k,2*n-k))/(2*n-k+1); /* Vladimir Kruchinin, Nov 01 2011 */
Formula
T(n, k) = Sum_{j>=0} T(n-1, k-1+j)*A000108(j); T(0, 0) = 1; T(n, k) = 0 if k < 0 or if k > n.
G.f.: 1/(1 - x*y*TernaryGF) = 1 + (y)x + (y+y^2)x^2 + (3y+2y^2+y^3)x^3 +... where TernaryGF = 1 + x + 3x^2 + 12x^3 + ... is the GF for A001764. - David Callan, Aug 27 2009
T(n, k) = ((k+1)*binomial(3*n-2*k,2*n-k))/(2*n-k+1). - Vladimir Kruchinin, Nov 01 2011
Comments