cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110657 a(n) = A028242(A028242(n)).

Original entry on oeis.org

0, 1, 2, 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6, 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10, 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14, 12, 13, 14, 15, 13, 14, 15, 16, 14, 15, 16, 17, 15, 16, 17, 18, 16, 17, 18, 19, 17, 18, 19, 20, 18, 19, 20, 21, 19, 20, 21
Offset: 0

Views

Author

Reinhard Zumkeller, Aug 05 2005

Keywords

Comments

Also array read by rows, with four columns, in which row n lists n, n+1, n+2, n. - Omar E. Pol, Jan 22 2012

Examples

			From _Omar E. Pol_, Jan 22 2012: (Start)
Array begins:
0, 1, 2, 0;
1, 2, 3, 1;
2, 3, 4, 2;
3, 4, 5, 3;
4, 5, 6, 4;
5, 6, 7, 5;
6, 7, 8, 6;
7, 8, 9, 7;
(End)
		

Crossrefs

Programs

  • Magma
    [Integers()!(2*n-6*(-1)^(n*(n+1)/2)+3*(-1)^n+3)/8: n in [0..81]]; // Bruno Berselli, Sep 28 2011
    
  • Maple
    A110657:=n->(1/8)*(2*n-6*(-1)^(n*(n+1)/2)+3*(-1)^n+3): seq(A110657(n), n=0..100); # Wesley Ivan Hurt, Apr 12 2015
  • Mathematica
    Table[(1/8)*(2*n - 6*(-1)^(n*(n + 1)/2) + 3*(-1)^n + 3), {n, 0, 100}] (* Wesley Ivan Hurt, Apr 12 2015 *)
    LinearRecurrence[{1,0,0,1,-1},{0,1,2,0,1},90] (* Harvey P. Dale, Feb 02 2020 *)
  • PARI
    vector(80, n, n--; 1 + (n-7)\4 + ((n-7) % 4)) \\ Michel Marcus, Apr 13 2015

Formula

A110658(n) = A028242(a(n)) = a(A028242(n)).
a(n) = floor(n/4) + (n mod 4) mod 3.
From Bruno Berselli, Sep 28 2011: (Start)
G.f.: x*(1+x-2*x^2+x^3)/((1+x)*(1+x^2)*(1-x)^2).
a(n) = (1/8)*(2*n-6*(-1)^(n*(n+1)/2)+3*(-1)^n+3). (End)
From Wesley Ivan Hurt, Apr 12 2015: (Start)
a(n) = a(n-1)+a(n-4)-a(n-5).
a(n) = 1 + floor((n-7)/4) + ((n-7) mod 4). (End)
a(n) = n - 3*floor((n+1)/4). - Gionata Neri, Oct 19 2015
a(n) = (2*n+3-6*cos(n*Pi/2)+3*cos(n*Pi)+6*sin(n*Pi/2))/8. - Wesley Ivan Hurt, Oct 01 2017
Sum_{n>=4} (-1)^(n+1)/a(n) = 1/2. - Amiram Eldar, Oct 04 2022