cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110706 Number of linear arrangements of n blue, n red and n green items such that there are no adjacent items of the same color.

Original entry on oeis.org

1, 6, 30, 174, 1092, 7188, 48852, 339720, 2403588, 17236524, 124948668, 913820460, 6732898800, 49918950240, 372104853600, 2786716100592, 20955408717396, 158149624268220, 1197390368733804, 9091866006950892, 69214297980023256, 528150412279712856
Offset: 0

Views

Author

Max Alekseyev, Aug 04 2005

Keywords

Comments

The number of circular arrangements is given by A110707 and A110710.

Crossrefs

Programs

  • Magma
    [2*(&+[Binomial(n-1, k)*(Binomial(n-1, k)*Binomial(2*n+1-2*k, n+1) + Binomial(n-1, k+1)*Binomial(2*n-2*k, n+1)): k in [0..Floor(n/2)]]): n in [1..25]]; // G. C. Greubel, Nov 24 2018
    
  • Maple
    a:= proc(n) option remember; `if`(n<2, 1+5*n,
          ((7*n-4)*a(n-1)+8*(n-2)^2*a(n-2)/(n+1))/n)
        end:
    seq(a(n), n=0..21);  # Alois P. Heinz, Sep 09 2023
  • Mathematica
    Table[2*(Sum[Binomial[n-1,k]*(Binomial[n-1,k]*Binomial[2n+1-2k, n+1]+Binomial[n-1,k+1]*Binomial[2n-2k,n+1]),{k,0,Floor[n/2]}]),{n,1,20}] (* Vaclav Kotesovec, Oct 18 2012 *)
    Table[2 (Binomial[2 n + 1, n + 1] HypergeometricPFQ[{1 - n, 1 - n, 1/2 - n/2, -(n/2)}, {1, -(1/2) - n, -n}, 1] + (n - 1) Binomial[2 n, n + 1] HypergeometricPFQ[{1 - n, 2 - n, 1/2 - n/2, 1 - n/2}, {2, 1/2 - n, -n}, 1]), {n, 10}] (* Eric W. Weisstein, May 26 2017 *)
    RecurrenceTable[{n(n+1)*a[n] == (n+1)*(7*n-4)*a[n-1] +8*(n-2)^2*a[n-2], a[1]==6, a[2]==30}, a, {n, 10}] (* Eric W. Weisstein, May 27 2017 *)
  • PARI
    a(n)=2*sum(k=0,n\2,binomial(n-1,k)*(binomial(n-1,k)*binomial(2*n+1-2*k,n+1)+binomial(n-1,k+1)*binomial(2*n-2*k,n+1)))
    
  • Sage
    [2*sum(binomial(n-1, k)*(binomial(n-1, k)*binomial(2*n+1-2*k, n+1) + binomial(n-1, k+1)*binomial(2*n-2*k, n+1))  for k in range(1+floor(n/2))) for n in (1..25)] # G. C. Greubel, Nov 24 2018

Formula

a(n) = 2 *( Sum_{k=0..floor(n/2)} binomial(n-1, k) * ( binomial(n-1, k) * binomial(2n+1-2k, n+1) + binomial(n-1, k+1)*binomial(2n-2k, n+1)) ).
a(n) = ((3*n-1)*A000172(n-1) + (3*n+2)*A000172(n))/(n+1).
D-finite with recurrence: n*(n+1)*a(n) = (n+1)*(7*n-4)*a(n-1) + 8*(n-2)^2*a(n-2). - Vaclav Kotesovec, Oct 18 2012
a(n) ~ 9*sqrt(3)*2^(3*n-2)/(Pi*n). - Vaclav Kotesovec, Oct 18 2012
G.f.: (2-x)*(1-8*x)^(-1/3)*(x+1)^(-2/3)*hypergeom([1/3, 1/3],[1],27*x^2/(8*x-1)/(x+1)^2) + 3*x*(2*x-1)^2*(1-8*x)^(-4/3)*(x+1)^(-8/3) * hypergeom([4/3, 4/3],[2],27*x^2/(8*x-1)/(x+1)^2) - 2. - Mark van Hoeij, May 14 2013
a(n) = 6*A190917(n) for n >= 1. - R. J. Mathar, Nov 01 2015

Extensions

a(0)=1 prepended by Alois P. Heinz, Sep 09 2023