A322093
Square array A(n,k), n >= 1, k >= 1, read by antidiagonals, where A(n,k) is the number of permutations of n copies of 1..k with no element equal to another within a distance of 1.
Original entry on oeis.org
1, 2, 0, 6, 2, 0, 24, 30, 2, 0, 120, 864, 174, 2, 0, 720, 39480, 41304, 1092, 2, 0, 5040, 2631600, 19606320, 2265024, 7188, 2, 0, 40320, 241133760, 16438575600, 11804626080, 134631576, 48852, 2, 0, 362880, 29083420800, 22278418248240, 131402141197200, 7946203275000, 8437796016, 339720, 2, 0
Offset: 1
Square array begins:
1, 2, 6, 24, 120, 720, ...
0, 2, 30, 864, 39480, 2631600, ...
0, 2, 174, 41304, 19606320, 16438575600, ...
0, 2, 1092, 2265024, 11804626080, 131402141197200, ...
0, 2, 7188, 134631576, 7946203275000, 1210527140790855600, ...
-
Table[Table[SeriesCoefficient[1/(1 - Sum[x[i]/(1 + x[i]), {i, 1, n}]), Sequence @@ Table[{x[i], 0, k}, {i, 1, n}]],{n, 1, 6}], {k, 1, 5}] (* Zlatko Damijanic, Nov 03 2024 *)
-
q(n,x) = sum(i=1, n, (-1)^(n-i) * binomial(n-1, n-i) * x^i/i!)
T(n,k) = subst(serlaplace(q(n,x)^k), x, 1) \\ Andrew Howroyd, Feb 03 2024
A190917
Number of permutations of n copies of 1..3 introduced in order 1..3 with no element equal to another within a distance of 1.
Original entry on oeis.org
1, 1, 5, 29, 182, 1198, 8142, 56620, 400598, 2872754, 20824778, 152303410, 1122149800, 8319825040, 62017475600, 464452683432, 3492568119566, 26358270711370, 199565061455634, 1515311001158482, 11535716330003876, 88025068713285476, 673124069796140900
Offset: 0
All solutions for n=2:
1 1 1 1 1
2 2 2 2 2
3 3 3 3 1
1 2 2 1 3
3 3 1 2 2
2 1 3 3 3
-
[(&+[Binomial(n-1, k)*(Binomial(n-1, k)*Binomial(2*n+1-2*k, n+1) + Binomial(n-1, k+1)*Binomial(2*n-2*k, n+1)): k in [0..Floor(n/2)]])/3: n in [1..25]]; // G. C. Greubel, Nov 24 2018
-
a:= proc(n) option remember; `if`(n<3, [1$2, 5][n+1],
((7*n-4)*a(n-1)+8*(n-2)^2*a(n-2)/(n+1))/n)
end:
seq(a(n), n=0..22); # Alois P. Heinz, Sep 09 2023
-
Table[(1/3)*Sum[Binomial[n-1, k]*(Binomial[n-1, k]*Binomial[2*n+1-2*k, n+1] + Binomial[n-1, k+1]*Binomial[2*n-2*k, n+1]), {k,0,Floor[n/2]}], {n,1,25}] (* G. C. Greubel, Nov 24 2018 *)
-
A190917(n) = sum(k=0, n\2, binomial(n-1, k)*(binomial(n-1, k)*binomial(2*n+1-2*k, n+1)+binomial(n-1, k+1)*binomial(2*n-2*k, n+1))) / 3; \\ Max Alekseyev, Dec 10 2017
-
[(1/3)*sum(binomial(n-1, k)*(binomial(n-1, k)*binomial(2*n+1-2*k, n+1) + binomial(n-1, k+1)*binomial(2*n-2*k, n+1)) for k in range(1+floor(n/2))) for n in (1..25)] # G. C. Greubel, Nov 24 2018
A110707
Number of linear arrangements of n blue, n red and n green items such that there are no adjacent items of the same color (first and last elements considered as adjacent).
Original entry on oeis.org
6, 24, 132, 804, 5196, 34872, 240288, 1688244, 12040188, 86892384, 633162360, 4650680640, 34390540320, 255773538240, 1911730760832, 14350853162676, 108139250403804, 817629606524112, 6200696697358344, 47152195812692664
Offset: 1
-
b = Binomial; a[n_] := 2*Sum[b[n-1, k]*(b[n-1, k]*(b[2*n+1-2*k, n+1] - 3* b[2*n-1-2*k, n+1]) + b[n-1, k+1]*(b[2*n-2*k, n+1] - 3*b[2*n-2*k-2, n+1]) ), {k, 0, n/2}]; Array[a, 20] (* Jean-François Alcover, Dec 04 2015, adapted from PARI *)
-
a(n) = 2 * sum(k=0,n\2, binomial(n-1,k) * ( binomial(n-1,k)*(binomial(2*n+1-2*k,n+1)-3*binomial(2*n-1-2*k,n+1)) + binomial(n-1,k+1)*(binomial(2*n-2*k,n+1)-3*binomial(2*n-2*k-2,n+1)) ))
A110710
Number of ternary necklaces with n beads of each color and no adjacent beads of the same color (i.e., no substrings 00, 11, 22).
Original entry on oeis.org
1, 2, 5, 16, 70, 348, 1948, 11444, 70380, 445944, 2896590, 19186740, 129186596, 881808728, 6089851874, 42482906040, 298976142764, 2120377458900, 15141289233972, 108784152585236, 785869931659980, 5705406374249272
Offset: 0
For n=2 there are 5 necklaces: 010212, 012012, 012021, 012102, 021021.
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc.
- F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc. [Cached copy, with permission, pdf format only]
- Index entries for sequences related to necklaces
-
b = Binomial; A110707[n_] := 2*Sum[b[n - 1, k]*(b[n - 1, k]*(b[2*n + 1 - 2*k, n + 1] - 3*b[2*n - 1 - 2*k, n + 1]) + b[n - 1, k + 1]*(b[2*n - 2*k, n + 1] - 3*b[2*n - 2*k - 2, n + 1])), {k,0, n/2}]; a[n_] := DivisorSum[n, A110707[n/#]*EulerPhi[#]&]/(3n); a[0]=1; Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Dec 04 2015, adapted from PARI *)
-
{ A110707(n) = 2 * sum(k=0,n\2, binomial(n-1,k) * (binomial(n-1,k)*(binomial(2*n+1-2*k,n+1)-3*binomial(2*n-1-2*k,n+1)) + binomial(n-1,k+1)*(binomial(2*n-2*k,n+1)-3*binomial(2*n-2*k-2,n+1)) )); A110710(n) = sumdiv(n,d,A110707(n\d)*eulerphi(d))\(3*n); }
A141147
Number of linear arrangements of n blue, n red and n green items such that the first item is blue and there are no adjacent items of the same color (first and last elements considered as adjacent).
Original entry on oeis.org
2, 8, 44, 268, 1732, 11624, 80096, 562748, 4013396, 28964128, 211054120, 1550226880, 11463513440, 85257846080, 637243586944, 4783617720892, 36046416801268, 272543202174704, 2066898899119448, 15717398604230888
Offset: 1
-
A141147 := n -> 2^n*hypergeom([n, (1-n)/2, -n/2],[1, 1],1);
seq(simplify(A141147(i)),i=1..20); # Peter Luschny, Jan 15 2012
-
{ a(n) = sum(k=0,n\2, binomial(n,2*k) * binomial(2*k,k) * binomial(n-1+k,k) * 2^(n-2*k) ) }
A209349
Number A(n,k) of initially rising meander words, where each letter of the cyclic k-ary alphabet occurs n times; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 5, 1, 0, 1, 1, 1, 9, 29, 1, 0, 1, 1, 1, 11, 100, 182, 1, 0, 1, 1, 1, 16, 182, 1225, 1198, 1, 0, 1, 1, 1, 19, 484, 3542, 15876, 8142, 1, 0, 1, 1, 1, 25, 902, 17956, 76258, 213444, 56620, 1, 0, 1
Offset: 0
A(0,0) = A(0,k) = A(n,0) = 1: the empty word.
A(1,1) = 1 = |{a}|.
A(2,1) = 0 = |{ }|.
A(2,2) = 1 = |{abab}|.
A(2,3) = 5 = |{abacbc, abcabc, abcacb, abcbac, abcbca}|.
A(1,4) = 1 = |{abcd}|.
A(2,4) = 9 = |{ababcdcd, abadcbcd, abadcdcb, abcbadcd, abcbcdad, abcdabcd, abcdadcb, abcdcbad, abcdcdab}|.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, ...
1, 0, 1, 5, 9, 11, 16, ...
1, 0, 1, 29, 100, 182, 484, ...
1, 0, 1, 182, 1225, 3542, 17956, ...
1, 0, 1, 1198, 15876, 76258, 749956, ...
1, 0, 1, 8142, 213444, 1753522, 33779344, ...
-
b:= proc() option remember; local n; n:= nargs;
`if`({args}={0}, 1,
`if`(args[2]>0, b(args[2]-1, args[i]$i=3..n, args[1]), 0)+
`if`(n>2 and args[n]>0, b(args[n]-1, args[i]$i=1..n-1), 0))
end:
A:= (n, k)-> `if`(n<2, 1, `if`(k<2, 1-k, b((n-1)$2, n$(k-2)))):
seq(seq(A(n, d-n), n=0..d), d=0..10);
-
b[args_List] := b[args] = Module[{n = Length[args]}, If[Union[args] == {0}, 1, If[args[[2]] > 0, b[Join[{args[[2]] - 1}, args[[3 ;; n]], { args[[1]]}]], 0] + If[n > 2 && args[[n]] > 0, b[Join[{args[[n]] - 1}, args[[1 ;; n - 1]]]], 0]]]; A[n_, k_] := If[n < 2, 1, If[k < 2, 1 - k, b[Join[{n - 1, n - 1}, Array[n&, k - 2]]]]]; Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Jan 21 2015, after Alois P. Heinz *)
A110711
Number of linear arrangements of n blue, n red and n green items such that first and last elements have the same color but there are no adjacent items of the same color.
Original entry on oeis.org
0, 6, 42, 288, 1992, 13980, 99432, 715344, 5196336, 38056284, 280658100, 2082218160, 15528409920, 116331315360, 874985339760, 6604555554720, 50010373864416, 379760762209692, 2891169309592548, 22062102167330592
Offset: 1
-
ogf := 6*((x-2)*hypergeom([1/3,1/3],[1], 27*x^2/((8*x-1)*(x+1)^2)) + 2*hypergeom([1/3,1/3],[2], 27*x^2/((8*x-1)*(x+1)^2))) / ((1-2* x)*(1+x)^(2/3)*(1-8*x)^(1/3));
series(ogf, x=0, 30); # Mark van Hoeij, Jan 22 2013
-
a(n) = 6 * sum(k=0,n\2, binomial(n-1,k) * ( binomial(n-1,k)*binomial(2*n-1-2*k,n+1) + binomial(n-1,k+1)*binomial(2*n-2*k-2,n+1) ))
A234633
Numbers of directed Hamiltonian paths in the complete tripartite graph K_{n,n,n}.
Original entry on oeis.org
6, 240, 37584, 15095808, 12420864000, 18233911296000, 43492335022080000, 157551157218115584000, 823642573772373884928000, 5970637844437187690496000000, 58120324656942369834270720000000, 739968068159742816891489484800000000
Offset: 1
-
Table[2 n!^3 (Binomial[2 n + 1, n + 1] HypergeometricPFQ[{1 - n, 1 - n, 1/2 - n/2, -(n/2)}, {1, -(1/2) - n, -n}, 1] + (n - 1) Binomial[2 n, n + 1] HypergeometricPFQ[{1 - n, 2 - n, 1/2 - n/2, 1 - n/2}, {2, 1/2 - n, -n}, 1]), {n, 10}] (* Eric W. Weisstein, May 26 2017 *)
A321634
Number of arrangements of n 1's, n 2's, ..., n n's avoiding equal consecutive terms.
Original entry on oeis.org
1, 1, 2, 174, 2265024, 7946203275000, 12229789732207993835280, 12202002913678756821228939869239920, 10937192762438008527903830198163831816546577931520, 11655577382287102750765311537460065620507094071664576111302628243840
Offset: 0
-
{a(n) = sum(i=n, n^2, i!*polcoef(sum(j=1, n, (-1)^(n-j)*binomial(n-1, j-1)*x^j/j!)^n, i))} \\ Seiichi Manyama, May 27 2019
A141146
Number of linear arrangements of n blue, n red and n green items such that first and last elements are blue but there are no adjacent items of the same color.
Original entry on oeis.org
0, 2, 14, 96, 664, 4660, 33144, 238448, 1732112, 12685428, 93552700, 694072720, 5176136640, 38777105120, 291661779920, 2201518518240, 16670124621472, 126586920736564, 963723103197516, 7354034055776864, 56236603567496720
Offset: 1
-
{ a(n) = sum(k=0,n\2, binomial(n-1,2*k) * binomial(2*k,k) * binomial(n-1+k,k+1) * 2^(n-1-2*k) ) }
Showing 1-10 of 14 results.
Comments