cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A322093 Square array A(n,k), n >= 1, k >= 1, read by antidiagonals, where A(n,k) is the number of permutations of n copies of 1..k with no element equal to another within a distance of 1.

Original entry on oeis.org

1, 2, 0, 6, 2, 0, 24, 30, 2, 0, 120, 864, 174, 2, 0, 720, 39480, 41304, 1092, 2, 0, 5040, 2631600, 19606320, 2265024, 7188, 2, 0, 40320, 241133760, 16438575600, 11804626080, 134631576, 48852, 2, 0, 362880, 29083420800, 22278418248240, 131402141197200, 7946203275000, 8437796016, 339720, 2, 0
Offset: 1

Views

Author

Seiichi Manyama, Nov 26 2018

Keywords

Examples

			Square array begins:
   1, 2,    6,        24,           120,                 720, ...
   0, 2,   30,       864,         39480,             2631600, ...
   0, 2,  174,     41304,      19606320,         16438575600, ...
   0, 2, 1092,   2265024,   11804626080,     131402141197200, ...
   0, 2, 7188, 134631576, 7946203275000, 1210527140790855600, ...
		

Crossrefs

Columns k=3 gives A110706.
Main diagonal gives A321634.
Cf. A322013.

Programs

  • Mathematica
    Table[Table[SeriesCoefficient[1/(1 - Sum[x[i]/(1 + x[i]), {i, 1, n}]), Sequence @@ Table[{x[i], 0, k}, {i, 1, n}]],{n, 1, 6}], {k, 1, 5}] (* Zlatko Damijanic, Nov 03 2024 *)
  • PARI
    q(n,x) = sum(i=1, n, (-1)^(n-i) * binomial(n-1, n-i) * x^i/i!)
    T(n,k) = subst(serlaplace(q(n,x)^k), x, 1) \\ Andrew Howroyd, Feb 03 2024

Formula

A(n,k) = k! * A322013(n,k).
Let q_n(x) = Sum_{i=1..n} (-1)^(n-i) * binomial(n-1, n-i) * x^i/i!.
A(n,k) = Integral_{0..infinity} (q_n(x))^k * exp(-x) dx.

A190917 Number of permutations of n copies of 1..3 introduced in order 1..3 with no element equal to another within a distance of 1.

Original entry on oeis.org

1, 1, 5, 29, 182, 1198, 8142, 56620, 400598, 2872754, 20824778, 152303410, 1122149800, 8319825040, 62017475600, 464452683432, 3492568119566, 26358270711370, 199565061455634, 1515311001158482, 11535716330003876, 88025068713285476, 673124069796140900
Offset: 0

Views

Author

R. H. Hardin, May 23 2011

Keywords

Examples

			All solutions for n=2:
  1    1    1    1    1
  2    2    2    2    2
  3    3    3    3    1
  1    2    2    1    3
  3    3    1    2    2
  2    1    3    3    3
		

Crossrefs

Column 3 of A322013.
Cf. A000012 (b=2), A190918 (b=4), A190920 (b=5), A190923 (b=6), A190927 (b=7), A190932 (b=8), A321987 (b=9), A322061 (b=10).

Programs

  • Magma
    [(&+[Binomial(n-1, k)*(Binomial(n-1, k)*Binomial(2*n+1-2*k, n+1) + Binomial(n-1, k+1)*Binomial(2*n-2*k, n+1)): k in [0..Floor(n/2)]])/3: n in [1..25]]; // G. C. Greubel, Nov 24 2018
    
  • Maple
    a:= proc(n) option remember; `if`(n<3, [1$2, 5][n+1],
          ((7*n-4)*a(n-1)+8*(n-2)^2*a(n-2)/(n+1))/n)
        end:
    seq(a(n), n=0..22);  # Alois P. Heinz, Sep 09 2023
  • Mathematica
    Table[(1/3)*Sum[Binomial[n-1, k]*(Binomial[n-1, k]*Binomial[2*n+1-2*k, n+1] + Binomial[n-1, k+1]*Binomial[2*n-2*k, n+1]), {k,0,Floor[n/2]}], {n,1,25}] (* G. C. Greubel, Nov 24 2018 *)
  • PARI
    A190917(n) = sum(k=0, n\2, binomial(n-1, k)*(binomial(n-1, k)*binomial(2*n+1-2*k, n+1)+binomial(n-1, k+1)*binomial(2*n-2*k, n+1))) / 3; \\ Max Alekseyev, Dec 10 2017
    
  • Sage
    [(1/3)*sum(binomial(n-1, k)*(binomial(n-1, k)*binomial(2*n+1-2*k, n+1) + binomial(n-1, k+1)*binomial(2*n-2*k, n+1))  for k in range(1+floor(n/2))) for n in (1..25)] # G. C. Greubel, Nov 24 2018

Formula

a(n) = A110706(n) / 6 for n >= 1.
n*(n+1)*a(n) - (n+1)*(7*n-4)*a(n-1) - 8*(n-2)^2*a(n-2) = 0. - R. J. Mathar, Nov 01 2015 from A110706

Extensions

a(0)=1 prepended by Alois P. Heinz, Sep 09 2023

A110707 Number of linear arrangements of n blue, n red and n green items such that there are no adjacent items of the same color (first and last elements considered as adjacent).

Original entry on oeis.org

6, 24, 132, 804, 5196, 34872, 240288, 1688244, 12040188, 86892384, 633162360, 4650680640, 34390540320, 255773538240, 1911730760832, 14350853162676, 108139250403804, 817629606524112, 6200696697358344, 47152195812692664
Offset: 1

Views

Author

Max Alekseyev, Aug 04 2005

Keywords

Comments

The number of linear arrangements is given by A110706 and the number of circular arrangements counted up to rotations is given by A110710.

Crossrefs

Programs

  • Mathematica
    b = Binomial; a[n_] := 2*Sum[b[n-1, k]*(b[n-1, k]*(b[2*n+1-2*k, n+1] - 3* b[2*n-1-2*k, n+1]) + b[n-1, k+1]*(b[2*n-2*k, n+1] - 3*b[2*n-2*k-2, n+1]) ), {k, 0, n/2}]; Array[a, 20] (* Jean-François Alcover, Dec 04 2015, adapted from PARI *)
  • PARI
    a(n) = 2 * sum(k=0,n\2, binomial(n-1,k) * ( binomial(n-1,k)*(binomial(2*n+1-2*k,n+1)-3*binomial(2*n-1-2*k,n+1)) + binomial(n-1,k+1)*(binomial(2*n-2*k,n+1)-3*binomial(2*n-2*k-2,n+1)) ))

Formula

a(n) = 2 * Sum[k=0..[n/2]] binomial(n-1, k) * ( binomial(n-1, k)*(binomial(2n+1-2k, n+1)-3*binomial(2n-1-2k, n+1)) + binomial(n-1, k+1)*(binomial(2n-2k, n+1)-3*binomial(2n-2k-2, n+1)) )
a(n) = A110706(n) - A110711(n)
a(n) = 2*A000172(n-1)+2*A000172(n) - Mark van Hoeij, Jul 14 2010
Conjecture: n^2*a(n) -3*n*(2*n-1)*a(n-1) -3*(n-1)*(5*n-12)*a(n-2) -8*(n-3)^2*a(n-3)=0. - R. J. Mathar, Jul 26 2014
a(n) ~ 3^(3/2) * 2^(3*n - 1) / (Pi*n). - Vaclav Kotesovec, Nov 09 2024

A110710 Number of ternary necklaces with n beads of each color and no adjacent beads of the same color (i.e., no substrings 00, 11, 22).

Original entry on oeis.org

1, 2, 5, 16, 70, 348, 1948, 11444, 70380, 445944, 2896590, 19186740, 129186596, 881808728, 6089851874, 42482906040, 298976142764, 2120377458900, 15141289233972, 108784152585236, 785869931659980, 5705406374249272
Offset: 0

Views

Author

Max Alekseyev, Aug 05 2005

Keywords

Comments

The number of circular arrangements (counted up to rotations) of n blue, n red and n green items such that there are no adjacent items of the same color. The number of various linear arrangements is given by A110706, A110707 and A110711.

Examples

			For n=2 there are 5 necklaces: 010212, 012012, 012021, 012102, 021021.
		

Crossrefs

Programs

  • Mathematica
    b = Binomial; A110707[n_] := 2*Sum[b[n - 1, k]*(b[n - 1, k]*(b[2*n + 1 - 2*k, n + 1] - 3*b[2*n - 1 - 2*k, n + 1]) + b[n - 1, k + 1]*(b[2*n - 2*k, n + 1] - 3*b[2*n - 2*k - 2, n + 1])), {k,0, n/2}]; a[n_] := DivisorSum[n, A110707[n/#]*EulerPhi[#]&]/(3n); a[0]=1; Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Dec 04 2015, adapted from PARI *)
  • PARI
    { A110707(n) = 2 * sum(k=0,n\2, binomial(n-1,k) * (binomial(n-1,k)*(binomial(2*n+1-2*k,n+1)-3*binomial(2*n-1-2*k,n+1)) + binomial(n-1,k+1)*(binomial(2*n-2*k,n+1)-3*binomial(2*n-2*k-2,n+1)) )); A110710(n) = sumdiv(n,d,A110707(n\d)*eulerphi(d))\(3*n); }

Formula

a(n) = Sum_{d|n} A110707(n/d)*eulerphi(d) / (3n) for n>0, a(0)=1.
a(n) ~ sqrt(3) * 2^(3*n - 1) / (Pi * n^2). - Vaclav Kotesovec, Mar 20 2023

Extensions

a(0)=1 prepended by Alois P. Heinz, Dec 04 2015

A141147 Number of linear arrangements of n blue, n red and n green items such that the first item is blue and there are no adjacent items of the same color (first and last elements considered as adjacent).

Original entry on oeis.org

2, 8, 44, 268, 1732, 11624, 80096, 562748, 4013396, 28964128, 211054120, 1550226880, 11463513440, 85257846080, 637243586944, 4783617720892, 36046416801268, 272543202174704, 2066898899119448, 15717398604230888
Offset: 1

Views

Author

Max Alekseyev, Jun 10 2008

Keywords

Crossrefs

Programs

  • Maple
    A141147 := n -> 2^n*hypergeom([n, (1-n)/2, -n/2],[1, 1],1);
    seq(simplify(A141147(i)),i=1..20); # Peter Luschny, Jan 15 2012
  • PARI
    { a(n) = sum(k=0,n\2, binomial(n,2*k) * binomial(2*k,k) * binomial(n-1+k,k) * 2^(n-2*k) ) }

Formula

a(n) = A110707(n) / 3 = (A000172(n) + A000172(n-1)) * 2 / 3.
a(n) = Sum_{k=0..floor(n/2)} binomial(n,2k) * binomial(2k,k) * binomial(n-1+k,k) * 2^(n-2k).
a(n) = 2^n*Hypergeometric([n,(1-n)/2,-n/2],[1, 1],1). - Peter Luschny, Jan 15 2012
Recurrence: (3*n^3 + 13*n^2 + 16*n + 4)*a(n+2) = (21*n^3 + 73*n^2 + 74*n + 16)*a(n+1) + (24*n^3 + 32*n^2)*a(n). - Ralf Stephan, Feb 11 2014
a(n) = (1/n) * Sum_{k = floor(n/2)..n} k * binomial(n,k)^2 * binomial(2*k,n). - Peter Bala, Mar 19 2023

A209349 Number A(n,k) of initially rising meander words, where each letter of the cyclic k-ary alphabet occurs n times; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 5, 1, 0, 1, 1, 1, 9, 29, 1, 0, 1, 1, 1, 11, 100, 182, 1, 0, 1, 1, 1, 16, 182, 1225, 1198, 1, 0, 1, 1, 1, 19, 484, 3542, 15876, 8142, 1, 0, 1, 1, 1, 25, 902, 17956, 76258, 213444, 56620, 1, 0, 1
Offset: 0

Views

Author

Alois P. Heinz, Mar 06 2012

Keywords

Comments

In a meander word letters of neighboring positions have to be neighbors in the alphabet, where in a cyclic alphabet the first and the last letters are considered neighbors too. The words are not considered cyclic here.
A word is initially rising if it is empty or if it begins with the first letter of the alphabet that can only be followed by the second letter in this word position.
A(n,k) is also the number of (n*k-1)-step walks on k-dimensional cubic lattice from (1,0,...,0) to (n,n,...,n) with positive unit steps in all dimensions such that the indices of dimensions used in consecutive steps differ by 1 or are in the set {1,k}.

Examples

			A(0,0) = A(0,k) = A(n,0) = 1: the empty word.
A(1,1) = 1 = |{a}|.
A(2,1) = 0 = |{ }|.
A(2,2) = 1 = |{abab}|.
A(2,3) = 5 = |{abacbc, abcabc, abcacb, abcbac, abcbca}|.
A(1,4) = 1 = |{abcd}|.
A(2,4) = 9 = |{ababcdcd, abadcbcd, abadcdcb, abcbadcd, abcbcdad, abcdabcd, abcdadcb, abcdcbad, abcdcdab}|.
Square array A(n,k) begins:
1,  1,  1,    1,      1,       1,        1, ...
1,  1,  1,    1,      1,       1,        1, ...
1,  0,  1,    5,      9,      11,       16, ...
1,  0,  1,   29,    100,     182,      484, ...
1,  0,  1,  182,   1225,    3542,    17956, ...
1,  0,  1, 1198,  15876,   76258,   749956, ...
1,  0,  1, 8142, 213444, 1753522, 33779344, ...
		

Crossrefs

Rows n=0+1, 2-3 give: A000012, A209350, A240954.
Columns k=0+2, 3-7 give: A000012, A190917 = A110706/6, A060150 = A088218^2, A209351, A209352, A209353.

Programs

  • Maple
    b:= proc() option remember; local n; n:= nargs;
         `if`({args}={0}, 1,
           `if`(args[2]>0, b(args[2]-1, args[i]$i=3..n, args[1]), 0)+
           `if`(n>2 and args[n]>0, b(args[n]-1, args[i]$i=1..n-1), 0))
        end:
    A:= (n, k)-> `if`(n<2, 1, `if`(k<2, 1-k, b((n-1)$2, n$(k-2)))):
    seq(seq(A(n, d-n), n=0..d), d=0..10);
  • Mathematica
    b[args_List] := b[args] = Module[{n = Length[args]}, If[Union[args] == {0}, 1, If[args[[2]] > 0, b[Join[{args[[2]] - 1}, args[[3 ;; n]], { args[[1]]}]], 0] + If[n > 2 && args[[n]] > 0, b[Join[{args[[n]] - 1}, args[[1 ;; n - 1]]]], 0]]]; A[n_, k_] := If[n < 2, 1, If[k < 2, 1 - k, b[Join[{n - 1, n - 1}, Array[n&, k - 2]]]]]; Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Jan 21 2015, after Alois P. Heinz *)

A110711 Number of linear arrangements of n blue, n red and n green items such that first and last elements have the same color but there are no adjacent items of the same color.

Original entry on oeis.org

0, 6, 42, 288, 1992, 13980, 99432, 715344, 5196336, 38056284, 280658100, 2082218160, 15528409920, 116331315360, 874985339760, 6604555554720, 50010373864416, 379760762209692, 2891169309592548, 22062102167330592
Offset: 1

Views

Author

Max Alekseyev, Aug 04 2005

Keywords

Comments

The number of linear arrangements is given by A110706 (first and last elements are not adjacent) and A110707 (first and last elements are adjacent) and the number of circular arrangements (counted up to rotations) is given by A110710.

Crossrefs

Programs

  • Maple
    ogf := 6*((x-2)*hypergeom([1/3,1/3],[1], 27*x^2/((8*x-1)*(x+1)^2)) + 2*hypergeom([1/3,1/3],[2], 27*x^2/((8*x-1)*(x+1)^2))) / ((1-2* x)*(1+x)^(2/3)*(1-8*x)^(1/3));
    series(ogf, x=0, 30); # Mark van Hoeij, Jan 22 2013
  • PARI
    a(n) = 6 * sum(k=0,n\2, binomial(n-1,k) * ( binomial(n-1,k)*binomial(2*n-1-2*k,n+1) + binomial(n-1,k+1)*binomial(2*n-2*k-2,n+1) ))

Formula

a(n) = 6 * Sum_{k=0..floor(n/2)} binomial(n-1, k) * ( binomial(n-1, k)*binomial(2n-1-2k, n+1) + binomial(n-1, k+1)*binomial(2n-2k-2, n+1) ).
a(n) = A110706(n) - A110707(n).
a(n) = ((n-3)*A000172(n-1) + n*A000172(n))/(n+1). - Mark van Hoeij, Jul 14 2010
Conjecture: -(n+1)*(n-2)*a(n) + (7*n^2 - 13*n + 4)*a(n-1) + 8*(n-2)^2*a(n-2) = 0. - R. J. Mathar, Nov 01 2015

A234633 Numbers of directed Hamiltonian paths in the complete tripartite graph K_{n,n,n}.

Original entry on oeis.org

6, 240, 37584, 15095808, 12420864000, 18233911296000, 43492335022080000, 157551157218115584000, 823642573772373884928000, 5970637844437187690496000000, 58120324656942369834270720000000, 739968068159742816891489484800000000
Offset: 1

Views

Author

Eric W. Weisstein, Dec 28 2013

Keywords

Crossrefs

Programs

  • Mathematica
    Table[2 n!^3 (Binomial[2 n + 1, n + 1] HypergeometricPFQ[{1 - n, 1 - n, 1/2 - n/2, -(n/2)}, {1, -(1/2) - n, -n}, 1] + (n - 1) Binomial[2 n, n + 1] HypergeometricPFQ[{1 - n, 2 - n, 1/2 - n/2, 1 - n/2}, {2, 1/2 - n, -n}, 1]), {n, 10}] (* Eric W. Weisstein, May 26 2017 *)

Formula

a(n) = n!^3 * A110706(n). - Andrew Howroyd, May 24 2017

Extensions

a(7)-a(12) from Andrew Howroyd, May 24 2017

A321634 Number of arrangements of n 1's, n 2's, ..., n n's avoiding equal consecutive terms.

Original entry on oeis.org

1, 1, 2, 174, 2265024, 7946203275000, 12229789732207993835280, 12202002913678756821228939869239920, 10937192762438008527903830198163831816546577931520, 11655577382287102750765311537460065620507094071664576111302628243840
Offset: 0

Views

Author

Seiichi Manyama, Nov 15 2018

Keywords

Crossrefs

Programs

  • PARI
    {a(n) = sum(i=n, n^2, i!*polcoef(sum(j=1, n, (-1)^(n-j)*binomial(n-1, j-1)*x^j/j!)^n, i))} \\ Seiichi Manyama, May 27 2019

Formula

a(n) ~ n^(n^2 - n/2 + 1) / ((2*Pi)^((n-1)/2) * exp(n - 5/12)). - Vaclav Kotesovec, Nov 24 2018

A141146 Number of linear arrangements of n blue, n red and n green items such that first and last elements are blue but there are no adjacent items of the same color.

Original entry on oeis.org

0, 2, 14, 96, 664, 4660, 33144, 238448, 1732112, 12685428, 93552700, 694072720, 5176136640, 38777105120, 291661779920, 2201518518240, 16670124621472, 126586920736564, 963723103197516, 7354034055776864, 56236603567496720
Offset: 1

Views

Author

Max Alekseyev, Jun 10 2008

Keywords

Crossrefs

Programs

  • PARI
    { a(n) = sum(k=0,n\2, binomial(n-1,2*k) * binomial(2*k,k) * binomial(n-1+k,k+1) * 2^(n-1-2*k) ) }

Formula

a(n) = A110711(n) / 3.
a(n) = Sum[k=0..[n/2]] binomial(n-1,2k) * binomial(2k,k) * binomial(n-1+k,k+1) * 2^(n-1-2k).
G.f.: (2*x-1)^2*(1-8*x)^(-4/3)*(x+1)^(-8/3)*hypergeom([4/3, 4/3],[2],27*x^2/((8*x-1)*(x+1)^2))-(1-8*x)^(-1/3)*(x+1)^(-2/3)*hypergeom([1/3, 1/3],[1],27*x^2/((8*x-1)*(x+1)^2)). - Mark van Hoeij, May 14 2013
Conjecture: -(n+1)*(n-2)*a(n) +(7*n^2-13*n+4)*a(n-1) +8*(n-2)^2*a(n-2)=0. - R. J. Mathar, Jul 23 2014
Showing 1-10 of 14 results. Next