cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A178647 Decimal expansion of the fraction of a population falling within +- 1 standard deviation of the mean, assuming a normal distribution.

Original entry on oeis.org

6, 8, 2, 6, 8, 9, 4, 9, 2, 1, 3, 7, 0, 8, 5, 8, 9, 7, 1, 7, 0, 4, 6, 5, 0, 9, 1, 2, 6, 4, 0, 7, 5, 8, 4, 4, 9, 5, 5, 8, 2, 5, 9, 3, 3, 4, 5, 3, 2, 0, 8, 7, 8, 1, 9, 7, 4, 7, 8, 8, 9, 0, 0, 4, 8, 5, 9, 8, 2, 8, 8, 3, 9, 7, 4, 4, 0, 9, 6, 5, 9, 0, 0, 1, 7, 6, 9, 8, 3, 6, 8, 1, 1, 2, 7, 8, 6, 5, 5, 0, 5, 6, 5, 4, 5
Offset: 0

Views

Author

Joost de Winter, May 31 2010

Keywords

Examples

			0.6826894921370858971704650912640758449558259334532087819747889004859...
		

References

  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 40, table 40:7:1 at page 387.

Crossrefs

Cf. A110894 (2sigma), A270712 (3sigma).

Programs

  • MATLAB
    0.5*(1+erf(1/sqrt(2)))- 0.5*(1+erf(-1/sqrt(2)))
    
  • Maple
    erf(1/sqrt(2)) ; evalf(%) ; # R. J. Mathar, Mar 22 2016
  • Mathematica
    RealDigits[(1 + Erf[1/Sqrt@2])/2 - (1 + Erf[ -1/Sqrt@2])/2, 10, 111][[1]] (* Robert G. Wilson v, Jun 01 2010 *)
  • PARI
    (erfc(-1/sqrt(2))-erfc(1/sqrt(2)))/2 \\ Charles R Greathouse IV, Sep 04 2012
    
  • PARI
    1 - erfc(1/sqrt(2)) \\ Rick L. Shepherd, Mar 05 2014

Formula

Equals erf(1/sqrt(2)). - Jean-François Alcover, May 29 2013

Extensions

More terms from Robert G. Wilson v, Jun 01 2010
Edited by N. J. A. Sloane, Jun 07 2010

A270712 Decimal expansion of the fraction of the normal distribution that falls within the 3 sigma error bars.

Original entry on oeis.org

9, 9, 7, 3, 0, 0, 2, 0, 3, 9, 3, 6, 7, 3, 9, 8, 1, 0, 9, 4, 6, 6, 9, 6, 3, 7, 0, 4, 6, 4, 8, 1, 0, 0, 4, 5, 2, 4, 4, 3, 4, 1, 2, 6, 3, 6, 8, 3, 2, 3, 8, 7, 0, 1, 2, 7, 1, 5, 5, 6, 0, 2, 9, 2, 8, 8, 3, 8, 8, 5, 5, 8, 4, 7, 0, 8, 5, 5, 7, 9, 9, 4, 6, 3, 9, 2, 2
Offset: 0

Views

Author

R. J. Mathar, Mar 22 2016

Keywords

Examples

			0.997300203936739810946696370...
		

Crossrefs

Cf. A178647 (1sigma), A110894 (2sigma).

Programs

  • Maple
    erf(3/sqrt(2)) ; evalf(%) ;
  • Mathematica
    RealDigits[Erf[3/Sqrt[2]], 10, 120][[1]] (* Amiram Eldar, May 24 2023 *)
  • PARI
    1 - erfc(3/sqrt(2)) \\ Michel Marcus, Mar 22 2016

A303617 Decimal expansion of Sum_{k >= 0} 2^(2*k+1)/Product_{i = 0..k} (2*i+1).

Original entry on oeis.org

8, 8, 3, 9, 4, 3, 9, 2, 4, 0, 9, 1, 9, 0, 4, 9, 0, 9, 4, 5, 6, 6, 9, 8, 0, 2, 4, 4, 3, 6, 2, 0, 3, 5, 7, 4, 1, 7, 1, 0, 0, 2, 8, 4, 6, 3, 7, 8, 3, 0, 9, 2, 7, 9, 6, 0, 4, 1, 8, 6, 3, 3, 9, 4, 0, 1, 1, 3, 8, 1, 0, 7, 1, 4, 5, 3, 7, 8, 6, 1, 4, 5, 5, 8, 0, 9, 4, 2, 0, 9, 6, 7, 3
Offset: 1

Views

Author

Bruno Berselli, Apr 27 2018

Keywords

Examples

			8.83943924091904909456698024436203574171002846378309279604186339401138107...
2/1 + 2^3/(1*3) + 2^5/(1*3*5) + 2^7/(1*3*5*7) + 2^9/(1*3*5*7*9) + 2^11/(1*3*5*7*9*11) + 2^13/(1*3*5*7*9*11*13) + ...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[E^2 Sqrt[Pi/2] Erf[Sqrt[2]], 10, 100][[1]]
  • PARI
    suminf(k=0, 2^(2*k+1)/prod(i=0, k, (2*i+1))) \\ Michel Marcus, Apr 27 2018

Formula

Equals e^2*sqrt(Pi/2)*erf(sqrt(2)) = A072334*A069998*A110894.

A349892 Decimal expansion of erf(1/e).

Original entry on oeis.org

3, 9, 7, 1, 1, 7, 6, 9, 4, 9, 8, 1, 5, 7, 7, 1, 6, 9, 6, 9, 2, 9, 0, 3, 8, 2, 9, 9, 1, 6, 6, 0, 7, 6, 7, 9, 2, 3, 3, 5, 2, 6, 2, 6, 5, 0, 5, 2, 4, 4, 3, 5, 7, 6, 1, 5, 2, 0, 6, 0, 4, 0, 8, 5, 6, 2, 5, 1, 4, 2, 7, 4, 4, 3, 7, 3, 6, 7, 9, 5, 5, 2, 4, 2, 7, 0, 5, 9, 8, 6, 8, 6, 2, 3, 3, 7, 4, 4, 0, 3, 7, 8, 9, 5
Offset: 0

Views

Author

Christoph B. Kassir, Dec 04 2021

Keywords

Examples

			0.3971176949815771696929038299166076792335...
		

Crossrefs

Programs

  • Maple
    evalf(erf(exp(-1)), 120);  # Alois P. Heinz, Dec 13 2021
  • Mathematica
    RealDigits[Erf[1/E], 10, 100][[1]] (* Amiram Eldar, Dec 04 2021 *)
  • PARI
    1 - erfc(1/exp(1)) \\ Michel Marcus, Dec 04 2021
Showing 1-4 of 4 results.