cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A051577 a(n) = (2*n + 3)!!/3 = A001147(n+2)/3.

Original entry on oeis.org

1, 5, 35, 315, 3465, 45045, 675675, 11486475, 218243025, 4583103525, 105411381075, 2635284526875, 71152682225625, 2063427784543125, 63966261320836875, 2110886623587616875, 73881031825566590625, 2733598177545963853125, 106610328924292590271875
Offset: 0

Views

Author

Keywords

Comments

Row m = 3 of the array A(3; m,n) := (2*n+m)!!/m!!, m >= 0, n >= 0.

Crossrefs

Cf. A000165, A001147, A002866(n+1) (m=0..2 rows of A(3; m,n)).

Programs

  • GAP
    F:=Factorial;; List([0..25], n-> F(2*n+4)/(12*2^n*F(n+2)) ); # G. C. Greubel, Nov 12 2019
  • Magma
    F:=Factorial; [F(2*n+4)/(12*2^n*F(n+2)): n in [0..25]]; // G. C. Greubel, Nov 12 2019
    
  • Maple
    seq( doublefactorial(2*n+3)/3,n=0..10) ; # R. J. Mathar, Sep 29 2013
  • Mathematica
    Table[(2*n + 3)!!/3!!, {n, 0, 25}] (* G. C. Greubel, Jan 22 2017 *)
    a[n_] := Sum[(-1)^k*Binomial[2*n + 1, n + k]*StirlingS1[n + k + 1 ,k], {k , 1, n + 1}]; Flatten[Table[a[n], {n, 0, 18}]] (* Detlef Meya, Jan 17 2024 *)
  • PARI
    vector(26, n, (2*n+2)!/(6*2^n*(n+1)!) ) \\ G. C. Greubel, Nov 12 2019
    
  • Sage
    f=factorial; [f(2*n+4)/(12*2^n*f(n+2)) for n in (0..25)] # G. C. Greubel, Nov 12 2019
    

Formula

a(n) = (2*n + 3)!!/3!!.
E.g.f.: 1/(1 - 2*x)^(5/2).
a(n) ~ (4/3) * sqrt(2) * n^2 * 2^n * e^(-n) * n^n *{1 + (47/24)*n^(-1) + ...}. - Joe Keane (jgk(AT)jgk.org), Nov 23 2001
Ramanujan polynomials -psi_n(n, x) evaluated at 0. - Ralf Stephan, Apr 16 2004
a(n) = 2^(2 + n) * Gamma(n + 5/2)/(3 * sqrt(Pi)). - Gerson Washiski Barbosa, May 05 2010
From Peter Bala, May 26 2017: (Start)
D-finite with recurrence a(n+1) = (2*n + 5)*a(n) with a(0) = 1.
O.g.f. A(x) satisfies the Riccati differential equation 2*x^2*A(x)' = (1 - 5*x)*A(x) - 1 with A(0) = 1.
G.f. as an S-fraction: A(x) = 1/(1 - 5*x/(1 - 2*x/(1 - 7*x/(1 - 4*x/(1 - 9*x/(1 - 6*x/(1 - ... - (2*n+3)*x/(1 - 2*n*x/(1 - ...))))))))) (by Stokes, 1982).
Reciprocal as an S-fraction: 1/A(x) = 1/(1 + 5*x/(1 - 7*x/(1 - 2*x/(1 - 9*x/(1 - 4*x/(1 - 11*x/(1 - 6*x/(1 - ... - (2*n + 5)*x/(1 - 2*n*x/(1 - ...)))))))))). (End)
From Amiram Eldar, Dec 11 2022: (Start)
Sum_{n>=0} 1/a(n) = 3*(sqrt(e*Pi/2) * erf(1/sqrt(2)) - 1), where erf is the error function.
Sum_{n>=0} (-1)^n/a(n) = 3*(1 - sqrt(Pi/(2*e)) * erfi(1/sqrt(2))), where erfi is the imaginary error function. (End)
a(n) = Sum_{k=1..n+1} (-1)^k*binomial(2*n + 1, n + k)*Stirling1(n + k + 1, k). - Detlef Meya, Jan 17 2024

A051579 a(n) = (2*n+5)!!/5!!, related to A001147 (odd double factorials).

Original entry on oeis.org

1, 7, 63, 693, 9009, 135135, 2297295, 43648605, 916620705, 21082276215, 527056905375, 14230536445125, 412685556908625, 12793252264167375, 422177324717523375, 14776206365113318125, 546719635509192770625
Offset: 0

Views

Author

Keywords

Comments

Row m=5 of the array A(3; m,n) := (2*n+m)!!/m!!, m >= 0, n >= 0.

Crossrefs

Cf. A000165, A001147(n+1), A002866(n+1), A051577, A051578 (rows m=0..4).

Programs

  • GAP
    List([0..20], n-> Product([0..n-1], j-> 2*j+7) ); # G. C. Greubel, Nov 12 2019
  • Magma
    [1] cat [(&*[2*j+7: j in [0..n-1]]): n in [1..20]]; // G. C. Greubel, Nov 12 2019
    
  • Maple
    df:=doublefactorial; seq(df(2*n+5)/df(5), n = 0..20); # G. C. Greubel, Nov 12 2019
  • Mathematica
    Table[2^n*Pochhammer[7/2, n], {n,0,20}] (* G. C. Greubel, Nov 12 2019 *)
  • PARI
    vector(20, n, prod(j=1,n-1, 2*j+5) ) \\ G. C. Greubel, Nov 12 2019
    
  • Sage
    [product( (2*j+7) for j in (0..n-1)) for n in (0..20)] # G. C. Greubel, Nov 12 2019
    

Formula

a(n) = (2*n+5)!!/4!!.
E.g.f.: 1/(1-2*x)^(7/2).
a(n) ~ 8/15*sqrt(2)*n^3*2^n*e^-n*n^n*(1 + 107/24*n^-1 + ...). - Joe Keane (jgk(AT)jgk.org), Nov 23 2001
G.f.: G(0)/(10*x) -1/(5*x), where G(k)= 1 + 1/(1 - x*(2*k+5)/(x*(2*k+5) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 13 2013
From Peter Bala, May 26 2017: (Start)
a(n+1) = (2*n + 7)*a(n) with a(0) = 1.
O.g.f. satisfies the Riccati differential equation 2*x^2*A(x)' = (1 - 7*x)*A(x) - 1 with A(0) = 1.
G.f. as an S-fraction: A(x) = 1/(1 - 7*x/(1 - 2*x/(1 - 9*x/(1 - 4*x/(1 - 11*x/(1 - 6*x/(1 - ... - (2*n + 5)*x/(1 - 2*n*x/(1 - ...))))))))) (by Stokes 1982).
Reciprocal as an S-fraction: 1/A(x) = 1/(1 + 7*x/(1 - 9*x/(1 - 2*x/(1 - 11*x/(1 - 4*x/(1 - 13*x/(1 - 6*x/(1 - ... - (2*n + 7)*x/(1 - 2*n*x/(1 - ...)))))))))). (End)
From Amiram Eldar, Dec 11 2022: (Start)
Sum_{n>=0} 1/a(n) = 15 * sqrt(e*Pi/2) * erf(1/sqrt(2)) - 20, where erf is the error function.
Sum_{n>=0} (-1)^n/a(n) = 15 * sqrt(Pi/(2*e)) * erfi(1/sqrt(2)) - 10, where erfi is the imaginary error function. (End)

A051583 a(n) = (2*n+9)!!/9!!, related to A001147 (odd double factorials).

Original entry on oeis.org

1, 11, 143, 2145, 36465, 692835, 14549535, 334639305, 8365982625, 225881530875, 6550564395375, 203067496256625, 6701227376468625, 234542958176401875, 8678089452526869375, 338445488648547905625, 13876265034590464130625
Offset: 0

Views

Author

Keywords

Comments

Row m=9 of the array A(3; m,n) := (2*n+m)!!/m!!, m >= 0, n >= 0.

Crossrefs

Cf. A000165, A001147(n+1), A002866(n+1), A178647.
Cf. A051577, A051578, A051579, A051580, A051581, A051582 (rows m=0..8).

Programs

  • GAP
    List([0..20], n-> Product([0..n-1], j-> 2*j+11) ); # G. C. Greubel, Nov 12 2019
  • Magma
    [1] cat [(&*[2*j+11: j in [0..n-1]]): n in [1..20]]; // G. C. Greubel, Nov 12 2019
    
  • Maple
    seq(2^n*pochhammer(11/2,n), n = 0..20); # G. C. Greubel, Nov 12 2019
  • Mathematica
    (2*Range[0,20]+9)!!/945 (* Harvey P. Dale, Apr 10 2019 *)
    Table[2^n*Pochhammer[11/2, n], {n,0,20}] (* G. C. Greubel, Nov 12 2019 *)
  • PARI
    vector(20, n, prod(j=0,n-2, 2*j+11) ) \\ G. C. Greubel, Nov 12 2019
    
  • Sage
    [product( (2*j+11) for j in (0..n-1)) for n in (0..20)] # G. C. Greubel, Nov 12 2019
    

Formula

a(n) = (2*n+9)!!/9!!.
E.g.f.: 1/(1-2*x)^(11/2).
From Peter Bala, May 26 2017: (Start)
a(n+1) = (2*n + 11)*a(n) with a(0) = 1.
O.g.f. satisfies the Riccati differential equation 2*x^2*A(x)' = (1 - 11*x)*A(x) - 1 with A(0) = 1.
G.f. as an S-fraction: A(x) = 1/(1 - 11*x/(1 - 2*x/(1 - 13*x/(1 - 4*x/(1 - 15*x/(1 - 6*x/(1 - ... - (2*n + 9)*x/(1 - 2*n*x/(1 - ...))))))))) (by Stokes 1982).
Reciprocal as an S-fraction: 1/A(x) = 1/(1 + 11*x/(1 - 13*x/(1 - 2*x/(1 - 15*x/(1 - 4*x/(1 - 17*x/(1 - 6*x/(1 - ... - (2*n + 11)*x/(1 - 2*n*x/(1 - ...)))))))))). (End)
From Amiram Eldar, Dec 11 2022: (Start)
Sum_{n>=0} 1/a(n) = 945 * sqrt(e*Pi/2) * erf(1/sqrt(2)) - 1332, where erf is the error function.
Sum_{n>=0} (-1)^n/a(n) = 945 * sqrt(Pi/(2*e)) * erfi(1/sqrt(2)) - 684, where erfi is the imaginary error function. (End)

A110894 Decimal expansion of error function of square root of 2.

Original entry on oeis.org

9, 5, 4, 4, 9, 9, 7, 3, 6, 1, 0, 3, 6, 4, 1, 5, 8, 5, 5, 9, 9, 4, 3, 4, 7, 2, 5, 6, 6, 6, 9, 3, 3, 1, 2, 5, 0, 5, 6, 4, 4, 7, 5, 5, 2, 5, 9, 6, 6, 4, 3, 1, 3, 2, 0, 3, 2, 6, 6, 7, 9, 9, 9, 7, 3, 9, 0, 4, 7, 4, 1, 9, 2, 9, 4
Offset: 0

Views

Author

Joost de Winter, Sep 20 2005

Keywords

Examples

			0.9544997...
		

Crossrefs

Cf. A178647 (1sigma), A270712 (3sigma).

Programs

  • Maple
    erf(sqrt(2.0)) ; # R. J. Mathar, Mar 07 2016
  • Mathematica
    RealDigits[Erf[Sqrt[2]], 10, 50][[1]] (* G. C. Greubel, Oct 19 2017 *)

Formula

Equals erf(sqrt(2)).

A249060 Column 1 of the triangular array at A249057.

Original entry on oeis.org

1, 4, 5, 24, 35, 192, 315, 1920, 3465, 23040, 45045, 322560, 675675, 5160960, 11486475, 92897280, 218243025, 1857945600, 4583103525, 40874803200, 105411381075, 980995276800, 2635284526875, 25505877196800, 71152682225625, 714164561510400, 2063427784543125
Offset: 0

Views

Author

Clark Kimberling, Oct 20 2014

Keywords

Examples

			First 3 rows from A249057:
1
4    1
5    4    1,
so that a(0) = 1, a(1) = 4, a(2) = 5.
		

Crossrefs

Programs

  • Mathematica
    z = 30; p[x_, n_] := x + (n + 2)/p[x, n - 1]; p[x_, 1] = 1;
    t = Table[Factor[p[x, n]], {n, 1, z}];
    u = Numerator[t]; v1 = Flatten[CoefficientList[u, x]]; (* A249057 *)
    v2 = u /. x -> 1  (* A249059 *)
    v3 = u /. x -> 0  (* A249060 *)
  • PARI
    f(n) = if (n, x + (n + 3)/f(n-1), 1);
    a(n) = polcoef(numerator(f(n)), 0); \\ Michel Marcus, Nov 25 2022

Formula

From Derek Orr, Oct 21 2014: (Start)
a(2*n) = (2*n+3)*(2*n+1)!!/3, for n > 0.
a(2*n+1) = (n+2)!*2^(n+1), for n > 0.
For n > 2, if n is even, a(n)/[(n+1)*(n-1)*(n-3)*...*7*5] = n + 3 and if n is odd, a(n)/[(n+1)*(n-1)*(n-3)*...*6*4] = n + 3. (End)
a(n) = gcd_2((n+3)!,(n+3)!!), where gcd_2(b,c) denotes the second-largest common divisor of non-coprime integers b and c, as defined in A309491. - Lechoslaw Ratajczak, Apr 15 2021
D-finite with recurrence: a(n) - (3+n)*a(n-2) = 0. - Georg Fischer, Nov 25 2022
Sum_{n>=0} 1/a(n) = 3*sqrt(e*Pi/2)*erf(1/sqrt(2)) + 2*sqrt(e) - 6, where erf is the error function. - Amiram Eldar, Dec 10 2022

A270712 Decimal expansion of the fraction of the normal distribution that falls within the 3 sigma error bars.

Original entry on oeis.org

9, 9, 7, 3, 0, 0, 2, 0, 3, 9, 3, 6, 7, 3, 9, 8, 1, 0, 9, 4, 6, 6, 9, 6, 3, 7, 0, 4, 6, 4, 8, 1, 0, 0, 4, 5, 2, 4, 4, 3, 4, 1, 2, 6, 3, 6, 8, 3, 2, 3, 8, 7, 0, 1, 2, 7, 1, 5, 5, 6, 0, 2, 9, 2, 8, 8, 3, 8, 8, 5, 5, 8, 4, 7, 0, 8, 5, 5, 7, 9, 9, 4, 6, 3, 9, 2, 2
Offset: 0

Views

Author

R. J. Mathar, Mar 22 2016

Keywords

Examples

			0.997300203936739810946696370...
		

Crossrefs

Cf. A178647 (1sigma), A110894 (2sigma).

Programs

  • Maple
    erf(3/sqrt(2)) ; evalf(%) ;
  • Mathematica
    RealDigits[Erf[3/Sqrt[2]], 10, 120][[1]] (* Amiram Eldar, May 24 2023 *)
  • PARI
    1 - erfc(3/sqrt(2)) \\ Michel Marcus, Mar 22 2016

A219337 Rounded frequency of population with score higher than mean +- n standard deviations.

Original entry on oeis.org

2, 6, 44, 741, 31574, 3488556, 1013594692, 781364430891, 1607468795310696, 8860626201053673385, 131236127104980388766388, 5233794723805693339116465076, 562910255724699183203714725974687, 163474435977817298005300626019111283694
Offset: 0

Views

Author

Joost de Winter, Nov 18 2012

Keywords

Examples

			For example, 1 in 2 people have IQ greater than 100, about 1 in 6 people have IQ greater than 115, about 1 in 44 have IQ greater than 130, etc. (assuming normal IQ distribution with mean of 100 and standard deviation of 15)
		

Crossrefs

Cf. A178647.

Programs

  • MATLAB
    round(2/(1-erf(n/sqrt(2))))
    
  • Mathematica
    Table[Round[2/(1 - Erf[n/Sqrt[2]])], {n, 0, 15}] (* T. D. Noe, Dec 10 2012 *)
  • PARI
    a(n)=round(2/erfc(n/sqrt(2))) \\ Charles R Greathouse IV, Dec 10 2012

Extensions

Extended by T. D. Noe, Dec 10 2012

A379853 Decimal expansion of the fraction of a population falling beyond +- 1 standard deviation of the mean, assuming a normal distribution.

Original entry on oeis.org

3, 1, 7, 3, 1, 0, 5, 0, 7, 8, 6, 2, 9, 1, 4, 1, 0, 2, 8, 2, 9, 5, 3, 4, 9, 0, 8, 7, 3, 5, 9, 2, 4, 1, 5, 5, 0, 4, 4, 1, 7, 4, 0, 6, 6, 5, 4, 6, 7, 9, 1, 2, 1, 8, 0, 2, 5, 2, 1, 1, 0, 9, 9, 5, 1, 4, 0, 1, 7, 1, 1, 6, 0, 2, 5, 5, 9, 0, 3, 4, 0, 9, 9, 8, 2, 3, 0, 1, 6, 3, 1, 8, 8, 7, 2, 1, 3, 4, 4, 9
Offset: 0

Views

Author

Stefano Spezia, Jan 04 2025

Keywords

Examples

			0.3173105078629141028295349087359241550441740665...
		

References

  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 40, table 40:7:1 at page 387.

Crossrefs

Programs

  • Mathematica
    RealDigits[Erfc[1/Sqrt[2]], 10, 100][[1]]

Formula

Equals 1 - A178647 = 2*A239382. - Hugo Pfoertner, Jan 04 2025
Showing 1-8 of 8 results.