cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A111015 Primes in A002535.

Original entry on oeis.org

11, 31, 601, 10711, 45281, 3245551, 4057691201, 87818089575031, 813086055916584907683448771376472778745411281, 16071419731004292876206308878779566599797733387541964081866111137961, 2259503969983505641049567911781316556859822340375755577282633545849516496717511
Offset: 1

Views

Author

Cino Hilliard, Oct 02 2005

Keywords

Comments

Original name: Starting with the fraction 1/1, this sequence gives the prime numerators of fractions built according to the rule: add top and bottom to get the new bottom, add top and 10 times bottom to get the new top.
Conjecture: Starting with 1/1, there are infinitely many primes in the numerators of fractions built according to the rule: add top and bottom to get the new bottom, add top and 2k times bottom to get the new top, for k>=1.
a(12) has 5304 digits and is not included here. - Bill McEachen, Jan 22 2023
a(12) = A002535(8563) = 1.0733...*10^5303. - Amiram Eldar, Jun 30 2024

Examples

			The raw ratios begin 1/1, 11/2, 31/13, 161/44, 601/205, ... = A002535/A002534. Among the numerators, 11, 31, and 601 are primes and are the first three terms here.
		

References

  • John Derbyshire, Prime Obsession, Joseph Henry Press, April 2004, p. 16.

Crossrefs

Programs

  • Mathematica
    Select[Numerator/@NestList[(10Denominator[#]+Numerator[#])/ (Denominator[#]+ Numerator[#])&,1/1,200],PrimeQ] (* Harvey P. Dale, Sep 15 2011 *)
    Select[LinearRecurrence[{2, 9}, {1, 1}, 150], PrimeQ] (* Amiram Eldar, Jun 30 2024 *)
  • PARI
    \\ k=mult,typ=1 num,2 denom. output prime num or denom
    primenum(n,k,typ) = {local(a,b,x,tmp,v); a=1;b=1; for(x=1,n, tmp=b; b=a+b; a=k*tmp+a; if(typ==1,v=a,v=b); if(isprime(v), print1(v, ", "); ) ); print(); print(a/b+.)}
    primenum(100, 10, 1)
    
  • Python
    from sympy import isprime
    from itertools import islice
    from fractions import Fraction
    def agen(): # generator of terms
        f = Fraction(1, 1)
        while True:
            n, d = f.numerator + 10*f.denominator, f.numerator + f.denominator
            if isprime(n): yield n
            f = Fraction(n, d)
    print(list(islice(agen(), 11))) # Michael S. Branicky, Jan 23 2023

Formula

Given t(0)=1, b(0)=1 then for i = 1, 2, ..., t(i)/b(i) = (t(i-1) + 10*b(i-1)) /(t(i-1) + b(i-1)), and sequence consists of the t(i) that are prime.

Extensions

a(11) from Michel Marcus, Jan 23 2023
Name simplified by Sean A. Irvine, Feb 25 2023