A111015 Primes in A002535.
11, 31, 601, 10711, 45281, 3245551, 4057691201, 87818089575031, 813086055916584907683448771376472778745411281, 16071419731004292876206308878779566599797733387541964081866111137961, 2259503969983505641049567911781316556859822340375755577282633545849516496717511
Offset: 1
Examples
The raw ratios begin 1/1, 11/2, 31/13, 161/44, 601/205, ... = A002535/A002534. Among the numerators, 11, 31, and 601 are primes and are the first three terms here.
References
- John Derbyshire, Prime Obsession, Joseph Henry Press, April 2004, p. 16.
Programs
-
Mathematica
Select[Numerator/@NestList[(10Denominator[#]+Numerator[#])/ (Denominator[#]+ Numerator[#])&,1/1,200],PrimeQ] (* Harvey P. Dale, Sep 15 2011 *) Select[LinearRecurrence[{2, 9}, {1, 1}, 150], PrimeQ] (* Amiram Eldar, Jun 30 2024 *)
-
PARI
\\ k=mult,typ=1 num,2 denom. output prime num or denom primenum(n,k,typ) = {local(a,b,x,tmp,v); a=1;b=1; for(x=1,n, tmp=b; b=a+b; a=k*tmp+a; if(typ==1,v=a,v=b); if(isprime(v), print1(v, ", "); ) ); print(); print(a/b+.)} primenum(100, 10, 1)
-
Python
from sympy import isprime from itertools import islice from fractions import Fraction def agen(): # generator of terms f = Fraction(1, 1) while True: n, d = f.numerator + 10*f.denominator, f.numerator + f.denominator if isprime(n): yield n f = Fraction(n, d) print(list(islice(agen(), 11))) # Michael S. Branicky, Jan 23 2023
Formula
Given t(0)=1, b(0)=1 then for i = 1, 2, ..., t(i)/b(i) = (t(i-1) + 10*b(i-1)) /(t(i-1) + b(i-1)), and sequence consists of the t(i) that are prime.
Extensions
a(11) from Michel Marcus, Jan 23 2023
Name simplified by Sean A. Irvine, Feb 25 2023
Comments