cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A298467 Smallest positive integer that can be expressed as the sum of consecutive positive squares in exactly n ways.

Original entry on oeis.org

1, 25, 20449, 554503705
Offset: 1

Views

Author

Seiichi Manyama, Jan 19 2018

Keywords

Comments

a(5) > 10^9. - Rémy Sigrist, Jan 19 2018
a(5) > 10^15. - Michael S. Branicky, Feb 18 2023

Examples

			a(2) = 25 because 3^2 + 4^2 = 5^2 = 25,
a(3) = 20449 because 7^2 + 8^2 + ... + 39^2 = 38^2 + 39^2 + ... + 48^2 = 143^2 = 20449.
a(4) = 554503705 because 480^2 + 481^2 + ... + 1210^2 = 3570^2 + 3571^2 + ... + 3612^2 = 3613^2 + 3614^2 + ... + 3654^2 = 7442^2 + 7443^2 ... + 7451^2 = 554503705. - _Rémy Sigrist_, Jan 19 2018
		

Crossrefs

Formula

a(n) <= A234311(n).

Extensions

a(4) from Rémy Sigrist, Jan 19 2018

A062681 Numbers that are sums of 2 or more consecutive squares in more than 1 way.

Original entry on oeis.org

365, 1405, 1730, 2030, 3281, 3655, 3740, 4510, 4705, 4760, 5244, 5434, 5915, 7230, 7574, 8415, 9385, 11055, 11900, 12325, 12524, 14905, 16745, 17484, 18879, 19005, 19855, 20449, 20510, 21790, 22806, 23681, 25580, 25585, 27230, 27420, 28985
Offset: 1

Views

Author

Erich Friedman, Jul 04 2001

Keywords

Comments

A subsequence of A174069; A111044 is the subsequence of numbers allowing at least 3 representations of the given form. - M. F. Hasler, Dec 23 2013

Examples

			365 = 10^2 + 11^2 + 12^2 = 13^2 + 14^2.
		

Crossrefs

Programs

A234311 Least number which can be written as a sum of at least 2 consecutive squares in at least n different ways.

Original entry on oeis.org

5, 365, 147441, 554503705
Offset: 1

Views

Author

M. F. Hasler, Dec 23 2013

Keywords

Comments

No more terms < 10^18. [Lars Blomberg, Jun 02 2014]

Examples

			a(1) = 5 = 1^2 + 2^2.
a(2) = 365 = 10^2 + 11^2 + 12^2 = 13^2 + 14^2.
a(3) = 147441 = 85^2+...+101^2 = 29^2+...+77^2 = 18^2+...+76^2.
a(4) = 554503705 = 480^2+...+1210^2 = 3570^2+...+3612^2 = 3613^2+...+3654^2 = 7442^2+...+7451^2.
		

Crossrefs

A299173 a(n) is the maximum number of squared consecutive positive integers into which the integer n can be partitioned.

Original entry on oeis.org

1, 0, 0, 1, 2, 0, 0, 0, 1, 0, 0, 0, 2, 3, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 3, 4, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 3, 0, 0, 0, 4, 5, 0, 0, 0, 0, 0, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 1, 0, 0, 0, 2, 4, 0, 0, 0, 5, 6, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Jean-François Alcover, Feb 04 2018

Keywords

Comments

a(k^2)>=1, the inequality being strict if k is in A097812.

Examples

			25 = 5^2 = 3^2 + 4^2 and no such partition is longer, so a(25) = 2.
30 = 1^2 + 2^2 + 3^2 + 4^2 and no such partition is longer, so a(30) = 4.
2018 = 7^2 + 8^2 + 9^2 + 10^2 + 11^2 + 12^2 + 13^2 + 14^2 + 15^2 + 16^2 + 17^2 + 18^2 and no such partition is longer, so a(2018) = 12. (This special example is due to _Seiichi Manyama_.) - _Jean-François Alcover_, Feb 05 2018
		

Crossrefs

Programs

  • Maple
    N:= 200: # to get a(1)..a(N)
    A:= Vector(N):
    S:= n -> n*(n+1)*(2*n+1)/6:
    M:= floor(sqrt(N)):
    for d from 1 to M do
      for b from d to M do
        s:= S(b) - S(b-d);
        if s > N then break fi;
        A[s]:= d
    od od:
    convert(A,list); # Robert Israel, Feb 04 2018
  • Mathematica
    terms = 100; jmax = Ceiling[Sqrt[terms]]; kmax = Ceiling[(3*terms)^(1/3)]; Clear[a]; a[_] = 0; Do[r = Range[j, j + k - 1]; n = r . r; If[k > a[n], a[n] = k], {j, jmax}, {k, kmax}]; Array[a, terms]
Showing 1-4 of 4 results.