cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A111075 a(n) = F(n) * Sum_{k|n} 1/F(k), where F(k) is the k-th Fibonacci number.

Original entry on oeis.org

1, 2, 3, 7, 6, 21, 14, 50, 52, 122, 90, 427, 234, 784, 1038, 2351, 1598, 6860, 4182, 17262, 17262, 35622, 28658, 139703, 90031, 243308, 300405, 766850, 514230, 2367006, 1346270, 5188658, 5326470, 11409346, 11782764, 44717548, 24157818
Offset: 1

Views

Author

Leroy Quet, Oct 10 2005

Keywords

Comments

a(n) = a(n+1) for n = 20, but for no other n < 25000. - Klaus Brockhaus, Oct 11 2005
If k|n then F(k)|F(n). Therefore A111075(n) = F(n) * sum{k|n} 1/F(k) = sum{k|n} F(n)/F(k) is a sum of integers. - Max Alekseyev, Oct 22 2005

Examples

			a(6) = F(6) sum{k|6} 1/F(k) = F(6) * (1/F(1) + 1/F(2) + 1/F(3) + 1/F(6)) = 8 * (1/1 + 1/1 + 1/2 + 1/8) = 21.
		

Crossrefs

Programs

  • Maple
    with(combinat): with(numtheory): a:=proc(n) local div: div:=divisors(n): fibonacci(n)*sum(1/fibonacci(div[j]),j=1..tau(n)) end: seq(a(n),n=1..40); # Emeric Deutsch, Oct 11 2005
    # second Maple program:
    a:= n-> (F-> F(n)*add(1/F(d),d=numtheory[divisors(n)))(
             combinat[fibonacci]):
    seq(a(n), n=1..42);  # Alois P. Heinz, Aug 20 2019
  • Mathematica
    f[n_] := Fibonacci[n]*Plus @@ (1/Fibonacci /@ Divisors[n]); Table[ f[n], {n, 37}] (* Robert G. Wilson v, Oct 11 2005 *)
  • PARI
    {for(n=1,37,d=divisors(n);print1(fibonacci(n)*sum(j=1,length(d), 1/fibonacci(d[j])),","))}
    
  • PARI
    {a(n)=fibonacci(n) * sumdiv(n,d, 1/fibonacci(d))} /* Paul D. Hanna, Oct 11 2005 */
    
  • PARI
    {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
    {a(n)=polcoeff(sum(m=1,n, x^m/(1 - Lucas(m)*x^m + (-1)^m*x^(2*m) +x*O(x^n))),n)} /* Paul D. Hanna, Oct 11 2005 */

Formula

G.f.: Sum_{n>=1} x^n/(1 - Lucas(n)*x^n + (-1)^n*x^(2*n)) where Lucas(n) = A000204(n). [Paul D. Hanna, Jan 09 2012]

Extensions