cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A153400 Numbers n such that 18*n+1 is not prime.

Original entry on oeis.org

0, 3, 5, 8, 12, 13, 14, 16, 18, 19, 20, 23, 25, 26, 28, 31, 33, 36, 37, 38, 39, 40, 43, 44, 47, 48, 50, 53, 54, 57, 58, 60, 61, 63, 66, 67, 68, 69, 70, 73, 74, 75, 76, 77, 78, 80, 82, 83, 84, 88, 89, 91, 93, 95, 96, 98
Offset: 1

Views

Author

Vincenzo Librandi, Dec 25 2008

Keywords

Examples

			Distribution of the positive terms in the following triangular array:
*;
*,*;
*,*,*;
*,*,*,*;
*,3,*,*,*;
*,*,5,*,*,*;
*,*,*,*,*,*,*;
*,*,*,*,*,*,*,16;
*,*,*,*,*,*,*,*,20;
*,*,*,*,*,*,*,*,*,*;
*,*,*,*,14,*,*,*,*,*,*; etc.
where * marks the noninteger values of (2*h*k + k + h)/9 with h >= k >= 1. - _Vincenzo Librandi_, Jan 14 2013
		

Crossrefs

Cf. A111094.

Programs

  • Magma
    [n: n in [0..150] | not IsPrime(18*n+1)]; // Vincenzo Librandi, Jan 14 2013
  • Mathematica
    Select[Range[0, 200], !PrimeQ[18 # + 1] &] (* Vincenzo Librandi, Jan 14 2013 *)

Extensions

0 added by Arkadiusz Wesolowski, Aug 03 2011

A165810 Primes p such that 18*p+1 is also a prime.

Original entry on oeis.org

2, 7, 11, 17, 29, 41, 59, 71, 79, 97, 127, 137, 139, 149, 151, 181, 197, 199, 241, 251, 277, 281, 307, 337, 347, 367, 379, 401, 431, 479, 491, 541, 569, 587, 659, 701, 709, 757, 797, 809, 821, 827, 829, 857, 877, 881, 947, 991, 1021, 1051, 1109, 1117, 1129, 1151, 1229
Offset: 1

Views

Author

Vincenzo Librandi, Sep 28 2009

Keywords

Examples

			For p=2, 18*p+1=37. For p=7, 18*p+1=127. For p=11, 18*p+1=199.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[1000]],PrimeQ[18#+1]&]  (* Harvey P. Dale, Mar 06 2011 *)

Formula

a(n) = (A165811(n)-1)/18.

Extensions

Extended by R. J. Mathar, Oct 16 2009

A165811 Primes of the form 18*p+1, where p is also a prime.

Original entry on oeis.org

37, 127, 199, 307, 523, 739, 1063, 1279, 1423, 1747, 2287, 2467, 2503, 2683, 2719, 3259, 3547, 3583, 4339, 4519, 4987, 5059, 5527, 6067, 6247, 6607, 6823, 7219, 7759, 8623, 8839, 9739, 10243, 10567, 11863, 12619, 12763, 13627, 14347, 14563, 14779, 14887
Offset: 1

Views

Author

Vincenzo Librandi, Sep 28 2009

Keywords

Examples

			p=2 contributes 37=18*2+1. p=7 contributes 127=18*7+1. p=11 contributes 199=18*11+1
		

Crossrefs

Programs

  • Magma
    [a: p in PrimesInInterval(2, 1000) | IsPrime(a) where a is 18*p + 1]; // Vincenzo Librandi, Oct 13 2012
  • Mathematica
    Select[Table[18p + 1, {p, Prime[Range[400]]}], PrimeQ] (* Vincenzo Librandi, Oct 13 2012 *)

Formula

a(n) = 1+18*A165810(n).

Extensions

Extended by R. J. Mathar, Oct 16 2009

A098877 Least k such that 3*(6*n)^k + 1 is prime.

Original entry on oeis.org

1, 1, 3, 1, 3, 1, 1, 3, 1, 1, 1, 14, 2, 2, 1, 3, 1, 270, 12, 2, 1, 1, 8, 1, 3, 2, 1, 2, 1, 1, 12, 1, 11, 1, 1, 2, 2, 12, 3, 2, 1, 1, 8, 2, 1, 1, 2, 3, 1, 2, 1, 1, 11, 3, 1, 1, 14, 2, 1, 16, 24, 1, 4, 1, 1, 3, 9, 3, 66, 4, 1, 1, 3, 6, 3, 3, 2, 7, 1, 3, 1, 156, 3, 2, 1, 1, 1, 12, 77, 1, 5, 1, 20, 1, 3, 2
Offset: 1

Views

Author

Pierre CAMI, Oct 13 2004

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{k = 1}, While[ !PrimeQ[3*((6*n)^k) + 1], k++ ]; k]; Table[ f[n], {n, 96}] (* Robert G. Wilson v, Oct 21 2004 *)

Formula

a(A111094(n)) = 1. - Michel Marcus, Jul 28 2015

Extensions

More terms from Robert G. Wilson v, Oct 21 2004
Showing 1-4 of 4 results.