A111726 Values of m corresponding to A111227.
4, 15, 78, 58, 67, 97, 101, 120, 110, 174, 160, 214, 239, 261, 557, 548, 1287, 1274, 1524
Offset: 1
Keywords
Crossrefs
Cf. A111227.
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
If n = 9 the iteration sequence is s(9) = {9, 13, 14, 24, 60, 168, 480, 1512, 4800, 15748, 28672} and Mod[s(9), 9] = {0, 4, 5, 6, 6, 6, 3, 0, 3, 7, 7}. The first iterate which is a multiple of 9 is the 7th = 1512, so a(9) = 7. For n = 67, the 101st iterate is the first, so a(67) = 101. Usually several iterates are divisible by the initial value. E.g., if n = 6, then 91 of the first 100 iterates are divisible by 6. A difficult term to compute: a(461) = 557. - _Don Reble_, Jun 23 2005
a019294 n = snd $ until ((== 0) . (`mod` n) . fst) (\(x, i) -> (a000203 x, i + 1)) (a000203 n, 1) -- Reinhard Zumkeller, Aug 02 2012
a:=[]; f:=func; for n in [1..81] do k:=n; s:=1; while f(k) mod n ne 0 do k:=f(k); s:=s+1; end while; Append(~a,s); end for; a; // Marius A. Burtea, Jan 11 2020
A019294 := proc(n) local a,nitr ; a := 1 ; nitr := numtheory[sigma](n); while modp(nitr,n) <> 0 do nitr := numtheory[sigma](nitr) ; a := a+1 ; end do: return a; end proc: # R. J. Mathar, Aug 22 2016
f[n_, m_] := Block[{d = DivisorSigma[1, n]}, If[ Mod[d, m] == 0, 0, d]]; Table[ Length[ NestWhileList[ f[ #, n] &, n, # != 0 &]] - 1, {n, 84}] (* Robert G. Wilson v, Jun 24 2005 *) Table[Length[NestWhileList[DivisorSigma[1,#]&,DivisorSigma[1,n], !Divisible[ #,n]&]],{n,90}] (* Harvey P. Dale, Mar 04 2015 *)
a(n)=if(n<0,0,c=1; s=n; while(sigma(s)%n>0,s=sigma(s); c++); c)
apply( A019294(n,s=n)=for(k=1,oo,(s=sigma(s))%n||return(k)), [1..99]) \\ M. F. Hasler, Jan 07 2020
Comments