A111246 Triangle read by rows: a(n,k) = number of partitions of an n-set into exactly k nonempty subsets, each of size <= 3.
1, 1, 1, 1, 3, 1, 0, 7, 6, 1, 0, 10, 25, 10, 1, 0, 10, 75, 65, 15, 1, 0, 0, 175, 315, 140, 21, 1, 0, 0, 280, 1225, 980, 266, 28, 1, 0, 0, 280, 3780, 5565, 2520, 462, 36, 1, 0, 0, 0, 9100, 26145, 19425, 5670, 750, 45, 1, 0, 0, 0, 15400, 102025, 125895, 56595, 11550, 1155
Offset: 1
Examples
a(1,1)=1; a(2,1)=1; a(2,2)=1; a(3,1)=1; a(3,2)=3; a(3,3)=1; a(4,1)=0; a(4,2)=7; a(4,3)=6; a(4,4)=1; a(5,1)=0; a(5,2)=10; a(5,3)=25; a(5,4)=10; a(5,5)=1; a(6,1)=0; a(6,2)=10; a(6,3)=75; a(6,4)=65; a(6,5)=15; a(6,6)=1; ...
References
- J. Y. Choi and J. D. H. Smith, On the combinatorics of multi-restricted numbers, Ars. Com., 75(2005), pp. 44-63.
Links
- J. Y. Choi and J. D. H. Smith, The Tri-restricted Numbers and Powers of Permutation Representations, J. Comb. Math. Comb. Comp. 42 (2002), 113-125.
- J. Y. Choi and J. D. H. Smith, On the Unimodality and Combinatorics of the Bessel Numbers, Discrete Math., 264 (2003), 45-53.
- J. Y. Choi et al., Reciprocity for multirestricted Stirling numbers, J. Combin. Theory 113 A (2006), 1050-1060.
Crossrefs
Programs
-
Maple
# The function BellMatrix is defined in A264428. # Adds (1,0,0,0,...) as column 0. BellMatrix(n -> `if`(n<3,1,0), 10); # Peter Luschny, Jan 27 2016
-
Mathematica
BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]]; rows = 12; M = BellMatrix[If[# < 3, 1, 0]&, rows]; Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 24 2018, after Peter Luschny *)
-
PARI
row(n) = {x='x+O('x^(n+1)); polcoeff(serlaplace(exp(y*(x+x^2/2+x^3/6))), n, 'x); } tabl(nn) = for(n=1, nn, print(Vecrev(row(n)/y))) \\ Jinyuan Wang, Dec 21 2019
Formula
a(n, k) = a(n-1, k-1) + k*a(n-1, k) - binomial(n-1, 3)*a(n-4, k-1).
G.f. = Sum_{k_1+k_2+k_3=k, k_1+ 2k_2+3k_3=n} frac{n!}{(1!)^{k_1}(2!)^{k_2}(3!)^{k_3}k_1!k_2!k_3!}.
E.g.f.: exp(y*(x+x^2/2+x^3/6)). - Vladeta Jovovic, Nov 01 2005
Extensions
More terms from Vladeta Jovovic, Nov 01 2005
Recurrence, offset and example corrected by David Applegate, Jan 16 2009
Comments