cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A111314 a(n) = a(n-1) + a(n-2) + 2 where a(0) = a(1) = 1.

Original entry on oeis.org

1, 1, 4, 7, 13, 22, 37, 61, 100, 163, 265, 430, 697, 1129, 1828, 2959, 4789, 7750, 12541, 20293, 32836, 53131, 85969, 139102, 225073, 364177, 589252, 953431, 1542685, 2496118, 4038805, 6534925, 10573732, 17108659, 27682393, 44791054, 72473449, 117264505, 189737956
Offset: 0

Views

Author

Parthasarathy Nambi, Nov 03 2005

Keywords

Comments

This is the sequence A(1,1;1,1;2) of the family of sequences [a,b:c,d:k] considered by G. Detlefs, and treated as A(a,b;c,d;k) in the W. Lang link given below. - Wolfdieter Lang, Oct 17 2010

Crossrefs

Programs

  • Maple
    with(combinat): seq(fibonacci(n-1)+fibonacci(n+3)-2, n=0..35); # Zerinvary Lajos, Jan 31 2008
  • Mathematica
    a[0] = a[1] = 1; a[n_] := a[n] = a[n - 1] + a[n - 2] + 2; Table[ a[n], {n, 0, 36}] (* Robert G. Wilson v *)
    RecurrenceTable[{a[0]==a[1]==1,a[n]==a[n-1]+a[n-2]+2},a,{n,40}] (* Harvey P. Dale, Mar 27 2022 *)
  • Sage
    from sage.combinat.sloane_functions import recur_gen2b; it = recur_gen2b(1,1,1,1, lambda n: 2); [next(it) for i in range(1,38)] # Zerinvary Lajos, Jul 09 2008

Formula

a(n) = 2*F(n+1)-F(n+2)+F(n+3)-2, where F(n) is the n-th Fibonacci number. - Robert G. Wilson v, Nov 10 2005
G.f.: (2*x^2-x+1)/((x-1)*(x^2+x-1)). - T. D. Noe, Oct 19 2007
a(n) = F(n-1)+F(n+3)-2. - Zerinvary Lajos, Jan 31 2008
a(n) = 3*F(n+1)-2. - Olivier Pirson, Jun 30 2015
E.g.f.: 3*exp(x/2)*(5*cosh(sqrt(5)*x/2) + sqrt(5)*sinh(sqrt(5)*x/2))/5 - 2*exp(x). - Stefano Spezia, Jul 21 2024

Extensions

More terms from Robert G. Wilson v, Nov 07 2005