cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A192951 Coefficient of x in the reduction by x^2 -> x+1 of the polynomial p(n,x) defined at Comments.

Original entry on oeis.org

0, 1, 3, 9, 20, 40, 74, 131, 225, 379, 630, 1038, 1700, 2773, 4511, 7325, 11880, 19252, 31182, 50487, 81725, 132271, 214058, 346394, 560520, 906985, 1467579, 2374641, 3842300, 6217024, 10059410, 16276523, 26336025, 42612643, 68948766
Offset: 0

Views

Author

Clark Kimberling, Jul 13 2011

Keywords

Comments

The titular polynomials are defined recursively: p(n,x) = x*p(n-1,x) + 3n - 1, with p(0,x)=1. For an introduction to reductions of polynomials by substitutions such as x^2 -> x+1, see A192232 and A192744.
...
The list of examples at A192744 is extended here; the recurrence is given by p(n,x) = x*p(n-1,x) + v(n), with p(0,x)=1, and the reduction of p(n,x) by x^2 -> x+1 is represented by u1 + u2*x:
...
If v(n)= n, then u1=A001595, u2=A104161.
If v(n)= n-1, then u1=A001610, u2=A066982.
If v(n)= 3n-1, then u1=A171516, u2=A192951.
If v(n)= 3n-2, then u1=A192746, u2=A192952.
If v(n)= 2n-1, then u1=A111314, u2=A192953.
If v(n)= n^2, then u1=A192954, u2=A192955.
If v(n)= -1+n^2, then u1=A192956, u2=A192957.
If v(n)= 1+n^2, then u1=A192953, u2=A192389.
If v(n)= -2+n^2, then u1=A192958, u2=A192959.
If v(n)= 2+n^2, then u1=A192960, u2=A192961.
If v(n)= n+n^2, then u1=A192962, u2=A192963.
If v(n)= -n+n^2, then u1=A192964, u2=A192965.
If v(n)= n(n+1)/2, then u1=A030119, u2=A192966.
If v(n)= n(n-1)/2, then u1=A192967, u2=A192968.
If v(n)= n(n+3)/2, then u1=A192969, u2=A192970.
If v(n)= 2n^2, then u1=A192971, u2=A192972.
If v(n)= 1+2n^2, then u1=A192973, u2=A192974.
If v(n)= -1+2n^2, then u1=A192975, u2=A192976.
If v(n)= 1+n+n^2, then u1=A027181, u2=A192978.
If v(n)= 1-n+n^2, then u1=A192979, u2=A192980.
If v(n)= (n+1)^2, then u1=A001891, u2=A053808.
If v(n)= (n-1)^2, then u1=A192981, u2=A192982.

Crossrefs

Programs

  • GAP
    F:=Fibonacci;; List([0..40], n-> F(n+4)+2*F(n+2)-(3*n+5)); # G. C. Greubel, Jul 12 2019
  • Magma
    I:=[0, 1, 3, 9]; [n le 4 select I[n] else 3*Self(n-1)-2*Self(n-2)-1*Self(n-3)+Self(n-4): n in [1..40]]; // Vincenzo Librandi, Nov 16 2011
    
  • Magma
    F:=Fibonacci; [F(n+4)+2*F(n+2)-(3*n+5): n in [0..40]]; // G. C. Greubel, Jul 12 2019
    
  • Mathematica
    (* First program *)
    q = x^2; s = x + 1; z = 40;
    p[0, x]:= 1;
    p[n_, x_]:= x*p[n-1, x] + 3n - 1;
    Table[Expand[p[n, x]], {n, 0, 7}]
    reduce[{p1_, q_, s_, x_}]:= FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
    t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
    u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A171516 *)
    u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192951 *)
    (* Additional programs *)
    LinearRecurrence[{3,-2,-1,1},{0,1,3,9},40] (* Vincenzo Librandi, Nov 16 2011 *)
    With[{F=Fibonacci}, Table[F[n+4]+2*F[n+2]-(3*n+5), {n,0,40}]] (* G. C. Greubel, Jul 12 2019 *)
  • PARI
    a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; 1,-1,-2,3]^n*[0;1;3;9])[1,1] \\ Charles R Greathouse IV, Mar 22 2016
    
  • PARI
    vector(40, n, n--; f=fibonacci; f(n+4)+2*f(n+2)-(3*n+5)) \\ G. C. Greubel, Jul 12 2019
    
  • Sage
    f=fibonacci; [f(n+4)+2*f(n+2)-(3*n+5) for n in (0..40)] # G. C. Greubel, Jul 12 2019
    

Formula

a(n) = 3*a(n-1) - 2*a(n-2) - a(n-3) + a(n-4).
From Bruno Berselli, Nov 16 2011: (Start)
G.f.: x*(1+2*x^2)/((1-x)^2*(1 - x - x^2)).
a(n) = ((25+13*t)*(1+t)^n + (25-13*t)*(1-t)^n)/(10*2^n) - 3*n - 5 = A000285(n+2) - 3*n - 5 where t=sqrt(5). (End)
a(n) = Fibonacci(n+4) + 2*Fibonacci(n+2) - (3*n+5). - G. C. Greubel, Jul 12 2019

A022086 Fibonacci sequence beginning 0, 3.

Original entry on oeis.org

0, 3, 3, 6, 9, 15, 24, 39, 63, 102, 165, 267, 432, 699, 1131, 1830, 2961, 4791, 7752, 12543, 20295, 32838, 53133, 85971, 139104, 225075, 364179, 589254, 953433, 1542687, 2496120, 4038807, 6534927, 10573734, 17108661, 27682395, 44791056, 72473451, 117264507
Offset: 0

Views

Author

Keywords

Comments

First differences of A111314. - Ross La Haye, May 31 2006
Pisano period lengths: 1, 3, 1, 6, 20, 3, 16, 12, 8, 60, 10, 6, 28, 48, 20, 24, 36, 24, 18, 60, ... . - R. J. Mathar, Aug 10 2012
For n>=6, a(n) is the number of edge covers of the union of two cycles C_r and C_s, r+s=n, with a single common vertex. - Feryal Alayont, Oct 17 2024

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 7,17.

Crossrefs

Essentially the same as A097135.
Sequences of the form Fibonacci(n+k) + Fibonacci(n-k) are listed in A280154.
Sequences of the form m*Fibonacci: A000045 (m=1), A006355 (m=2), this sequence (m=3), A022087 (m=4), A022088 (m=5), A022089 (m=6), A022090 (m=7), A022091 (m=8), A022092 (m=8), A022093 (m=10), A022345...A022366 (m=11...32).

Programs

  • Magma
    [3*Fibonacci(n): n in [0..40]]; // Vincenzo Librandi, Dec 31 2016
    
  • Maple
    BB := n->if n=0 then 3; > elif n=1 then 0; > else BB(n-2)+BB(n-1); > fi: > L:=[]: for k from 1 to 34 do L:=[op(L),BB(k)]: od: L; # Zerinvary Lajos, Mar 19 2007
    with (combinat):seq(sum((fibonacci(n,1)),m=1..3),n=0..32); # Zerinvary Lajos, Jun 19 2008
  • Mathematica
    LinearRecurrence[{1, 1}, {0, 3}, 40] (* Arkadiusz Wesolowski, Aug 17 2012 *)
    Table[Fibonacci[n + 4] + Fibonacci[n - 4] - 4 Fibonacci[n], {n, 0, 40}] (* Bruno Berselli, Dec 30 2016 *)
    Table[3 Fibonacci[n], {n, 0, 40}] (* Vincenzo Librandi, Dec 31 2016 *)
  • PARI
    a(n)=3*fibonacci(n) \\ Charles R Greathouse IV, Nov 06 2014
    
  • SageMath
    def A022086(n): return 3*fibonacci(n)
    print([A022086(n) for n in range(41)]) # G. C. Greubel, Apr 10 2025

Formula

a(n) = 3*Fibonacci(n).
a(n) = F(n-2) + F(n+2) for n>1, with F=A000045.
a(n) = round( ((6*phi-3)/5) * phi^n ) for n>2. - Thomas Baruchel, Sep 08 2004
a(n) = A119457(n+1,n-1) for n>1. - Reinhard Zumkeller, May 20 2006
G.f.: 3*x/(1-x-x^2). - Philippe Deléham, Nov 19 2008
a(n) = A187893(n) - 1. - Filip Zaludek, Oct 29 2016
E.g.f.: 6*sinh(sqrt(5)*x/2)*exp(x/2)/sqrt(5). - Ilya Gutkovskiy, Oct 29 2016
a(n) = F(n+4) + F(n-4) - 4*F(n), F = A000045. - Bruno Berselli, Dec 29 2016

A120562 Sum of binomial coefficients binomial(i+j, i) modulo 2 over all pairs (i,j) of positive integers satisfying 3i+j=n.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 2, 3, 1, 3, 2, 3, 2, 4, 3, 5, 1, 4, 3, 4, 2, 5, 3, 5, 2, 5, 4, 6, 3, 7, 5, 8, 1, 6, 4, 5, 3, 7, 4, 7, 2, 6, 5, 7, 3, 8, 5, 8, 2, 7, 5, 7, 4, 9, 6, 10, 3, 9, 7, 10, 5, 12, 8, 13, 1
Offset: 0

Views

Author

Sam Northshield (samuel.northshield(AT)plattsburgh.edu), Aug 07 2006

Keywords

Comments

a(n) is the number of 'vectors' (..., e_k, e_{k-1}, ..., e_0) with e_k in {0,1,3} such that Sum_{k} e_k 2^k = n. a(2^n-1) = F(n+1)*a(2^{k+1}+j) + a(j) = a(2^k+j) + a(2^{k-1}+j) if 2^k > 4j. This sequence corresponds to the pair (3,1) as Stern's diatomic sequence [A002487] corresponds to (2,1) and Gould's sequence [A001316] corresponds to (1,1). There are many interesting similarities to A000119, the number of representations of n as a sum of distinct Fibonacci numbers.
A120562 can be generated from triangle A177444. Partial sums of A120562 = A177445. - Gary W. Adamson, May 08 2010
The Ca1 and Ca2 triangle sums, see A180662 for their definitions, of Sierpinski's triangle A047999 equal this sequence. Some A120562(2^n-p) sequences, 0 <= p <= 32, lead to known sequences, see the crossrefs. - Johannes W. Meijer, Jun 05 2011

Examples

			a(2^n)=1 since a(2n)=a(n).
		

Crossrefs

Cf. A001316 (1,1), A002487 (2,1), A120562 (3,1), A112970 (4,1), A191373 (5,1).
Cf. A177444, A177445. - Gary W. Adamson, May 08 2010
Cf. A000012 (p=0), A000045 (p=1, p=2, p=4, p=8, p=16, p=32), A000071 (p=3, p=6, p=12, p=13, p=24, p=26), A001610 (p=5, p=10, p=20), A001595 (p=7, p=14, p=28), A014739 (p=11, p=22, p=29), A111314 (p=15, p=30), A027961 (p=19), A154691 (p=21), A001911 (p=23). - Johannes W. Meijer, Jun 05 2011
Same recurrence for odd n as A000930.

Programs

  • Maple
    p := product((1+x^(2^i)+x^(3*2^i)), i=0..25): s := series(p, x, 1000): for k from 0 to 250 do printf(`%d, `, coeff(s, x, k)) od:
    A120562:=proc(n) option remember; if n <0 then A120562(n):=0 fi: if (n=0 or n=1) then 1 elif n mod 2 = 0 then A120562(n/2) else A120562((n-1)/2) + A120562((n-3)/2); fi; end: seq(A120562(n),n=0..64); # Johannes W. Meijer, Jun 05 2011
  • Mathematica
    a[0] = a[1] = 1; a[n_?EvenQ] := a[n] = a[n/2]; a[n_?OddQ] := a[n] = a[(n-1)/2] + a[(n-1)/2 - 1]; Table[a[n], {n, 0, 64}] (* Jean-François Alcover, Sep 29 2011 *)
    Nest[Append[#1, If[EvenQ@ #2, #1[[#2/2 + 1]], Total@ #1[[#2 ;; #2 + 1]] & @@ {#1, (#2 - 1)/2}]] & @@ {#, Length@ #} &, {1, 1}, 10^4 - 1] (* Michael De Vlieger, Feb 19 2019 *)

Formula

Recurrence; a(0)=a(1)=1, a(2*n)=a(n) and a(2*n+1)=a(n)+a(n-1).
G.f.: A(x) = Product_{i>=0} (1 + x^(2^i) + x^(3*2^i)) = (1 + x + x^3)*A(x^2).
a(n-1) << n^x with x = log_2(phi) = 0.69424... - Charles R Greathouse IV, Dec 27 2011

Extensions

Reference edited and link added by Jason G. Wurtzel, Aug 22 2010

A192953 Coefficient of x in the reduction by x^2 -> x+1 of the polynomial p(n,x) defined at Comments.

Original entry on oeis.org

0, 1, 2, 6, 13, 26, 48, 85, 146, 246, 409, 674, 1104, 1801, 2930, 4758, 7717, 12506, 20256, 32797, 53090, 85926, 139057, 225026, 364128, 589201, 953378, 1542630, 2496061, 4038746, 6534864, 10573669, 17108594, 27682326, 44790985, 72473378
Offset: 0

Views

Author

Clark Kimberling, Jul 13 2011

Keywords

Comments

The titular polynomials are defined recursively: p(n,x) = x*p(n-1,x) + 2n - 1, with p(0,x)=1. For an introduction to reductions of polynomials by substitutions such as x^2 -> x+1, see A192232 and A192744.

Crossrefs

Programs

  • GAP
    F:=Fibonacci;; List([0..40], n-> 3*F(n+2)-(2*n+3)); # G. C. Greubel, Jul 12 2019
  • Magma
    F:=Fibonacci; [3*F(n+2)-(2*n+3): n in [0..40]]; // G. C. Greubel, Jul 12 2019
    
  • Mathematica
    (* First program *)
    q = x^2; s = x + 1; z = 40;
    p[0, x]:= 1;
    p[n_, x_]:= x*p[n-1, x] + 2n - 1;
    Table[Expand[p[n, x]], {n, 0, 7}]
    reduce[{p1_, q_, s_, x_}]:= FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
    t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
    u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A111314 *)
    u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192953 *)
    (* Second program *)
    With[{F=Fibonacci}, Table[3*F[n+2]-(2*n+3), {n,0,40}]] (* G. C. Greubel, Jul 12 2019 *)
  • PARI
    vector(40, n, n--; f=fibonacci; 3*f(n+2)-(2*n+3)) \\ G. C. Greubel, Jul 12 2019
    
  • Sage
    f=fibonacci; [3*f(n+2)-(2*n+3) for n in (0..40)] # G. C. Greubel, Jul 12 2019
    

Formula

a(n) = 3*a(n-1) - 2*a(n-2) - a(n-3) + a(n-4).
G.f.: x*(1 -x +2*x^2)/((1-x-x^2)*(1-x)^2). - R. J. Mathar, Aug 01 2011
a(n) = -2*n - 3 + 3*A000045(n+2). - R. J. Mathar, Aug 01 2011
a(n) = A131300(n) - 1. - R. J. Mathar, Mar 24 2018
a(n) = 3*Fibonacci(n+2) - (2*n+3). - G. C. Greubel, Jul 12 2019

A131241 3*A046854 - 2*I.

Original entry on oeis.org

1, 3, 1, 3, 3, 1, 3, 6, 3, 1, 3, 6, 9, 3, 1, 3, 9, 9, 12, 3, 1, 3, 9, 18, 12, 15, 3, 1, 3, 12, 18, 30, 15, 18, 3, 1, 3, 12, 30, 30, 45, 18, 21, 3, 1, 3, 15, 30, 60, 45, 63, 21, 24, 3, 1
Offset: 0

Views

Author

Gary W. Adamson, Jun 21 2007

Keywords

Comments

Row sums = A111314: (1, 4, 7, 13, 22, 37, ...). A131240 = 2*A046854 - I.

Examples

			First few rows of the triangle:
  1;
  3,  1;
  3,  3,  1;
  3,  6,  3,  1;
  3,  6,  9,  3,  1;
  3,  9,  9, 12,  3,  1
  3,  9, 18, 12, 15,  3,  1;
  ...
		

Crossrefs

Formula

3*A046854 - 2*I, where A046854 = Pascal's triangle with repeats by columns and I = Identity matrix.

A362255 a(0) = a(1) = a(2) = 1, for n > 2, a(n) = a(n-1) + a(n-k) + k with k = 2.

Original entry on oeis.org

1, 1, 1, 4, 7, 10, 16, 25, 37, 55, 82, 121, 178, 262, 385, 565, 829, 1216, 1783, 2614, 3832, 5617, 8233, 12067, 17686, 25921, 37990, 55678, 81601, 119593, 175273, 256876, 376471, 551746, 808624, 1185097, 1736845, 2545471, 3730570, 5467417, 8012890, 11743462, 17210881
Offset: 0

Views

Author

Michael De Vlieger, Apr 13 2023

Keywords

Comments

Called Leonardo 2-numbers in the Tan-Leung paper.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2, -1, 1, -1}, {1, 1, 1, 4}, 40] (* or *)
    With[{k = 2}, Nest[Append[#, #[[-1]] + #[[-k - 1]] + k] &, {1, 1, 1}, 40] ]

A362256 a(0) = a(1) = a(2) = 1, for n > 2, a(n) = a(n-1) + a(n-k) + k with k = 3.

Original entry on oeis.org

1, 1, 1, 5, 9, 13, 17, 25, 37, 53, 73, 101, 141, 197, 273, 377, 521, 721, 997, 1377, 1901, 2625, 3625, 5005, 6909, 9537, 13165, 18173, 25085, 34625, 47793, 65969, 91057, 125685, 173481, 239453, 330513, 456201, 629685, 869141, 1199657, 1655861, 2285549, 3154693
Offset: 0

Views

Author

Michael De Vlieger, Apr 13 2023

Keywords

Comments

Called Leonardo 3-numbers in the Tan-Leung paper.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2, -1, 0, 1, -1}, {1, 1, 1, 5, 9}, 44] (* or *)
    With[{p = 3}, Nest[Append[#, #[[-1]] + #[[-p - 1]] + p] &, {1, 1, 1, 5}, 40] ]
Showing 1-7 of 7 results.