cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A181321 Primes with digital sum 70.

Original entry on oeis.org

189997999, 199799989, 199898899, 199997899, 199997989, 199998889, 268999999, 269998999, 278989999, 278999989, 279889999, 279988999, 287998999, 287999989, 288998989, 288999889, 288999979, 289699999, 289789999, 289889989
Offset: 1

Views

Author

Zak Seidov, Jan 26 2011

Keywords

Comments

The sequence begins with 8438 9-digit numbers.
Then there are 739572 10-digit numbers.
All terms == 7 (mod 18).

Crossrefs

Cf. similar sequences listed in A244918.

Programs

  • Magma
    [p: p in PrimesUpTo(3*10^8) | &+Intseq(p) eq 70]; // Vincenzo Librandi, Jul 09 2014
    
  • Mathematica
    Select[Prime[Range[3*10^8]], Total[IntegerDigits[#]]==70 &] (* Vincenzo Librandi, Jul 09 2014 *)
  • Python
    # see code in A107579 which can be used to produce this sequence by giving the initial term p = 189997999 (or 8*10**7-1, for digit sum 70). - M. F. Hasler, Mar 16 2022

A152652 Least prime p with digit sum A047235(n).

Original entry on oeis.org

2, 13, 17, 19, 59, 79, 389, 499, 1889, 1999, 6899, 17989, 39989, 49999, 98999, 199999, 599999, 799999, 2999999, 4999999, 9899999, 19999999, 59999999, 189997999, 389999999, 689899999, 998999999, 2999899999, 6999999989, 9899989999, 39899999999, 68899999999, 98999999999
Offset: 1

Views

Author

Giovanni Teofilatto, Dec 10 2008

Keywords

Crossrefs

Cf. A111380 (smallest prime whose digital sum is equal to the n-th composite number not congruent to 0 (modulo 3)). - Klaus Brockhaus, Dec 12 2008

Programs

  • Magma
    T:=[ n eq 1 select 2 else Self(n-1)+2*(1+n mod 2): n in [1..22] ]; S:=[]; p:=2; for k in T do while &+Intseq(p, 10) ne k do p:=NextPrime(p); end while; Append(~S,p); end for; S; // Klaus Brockhaus, Dec 13 2008
    
  • PARI
    a(n) = {n = (n-1)\2*6+3+(-1)^n ; t = ceil(n/9); leastfound = oo; while(leastfound == oo, my(p = partitions(n, [1,9], [t,t])); v = vector(#p, i, oo); for(i = 1, #p, if(fromdigits(Vec(p[i])) > leastfound, next(2)); forperm(Vec(p[i]), q, if(isprime(fromdigits(Vec(q))), leastfound = min(leastfound, fromdigits(Vec(q))); v[i] = min(v[i], fromdigits(Vec(q))); next(2); ) ) ); t++ ); leastfound }\\ David A. Corneth, Jun 13 2020

Formula

{min A000040(i): A007605(i) = A047234(n)}. - R. J. Mathar, Dec 12 2008

Extensions

Edited and extended by R. J. Mathar, Dec 12 2008
a(20)-a(22) from Klaus Brockhaus, Dec 13 2008
More terms from Jinyuan Wang, Jun 13 2020
Showing 1-2 of 2 results.