cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A111883 Unsigned row sums of triangle A111595 (normalized rescaled squared Hermite polynomials).

Original entry on oeis.org

1, 1, 4, 16, 100, 676, 5776, 53824, 583696, 6864400, 90174016, 1274204416, 19642583104, 323196798016, 5714394630400, 107112895415296, 2135062451773696, 44858948563673344, 994634863541502976, 23133227941938073600, 564474119626559497216, 14388648533002088866816
Offset: 0

Views

Author

Wolfdieter Lang, Aug 23 2005

Keywords

Crossrefs

Cf. A111882 (row sums of A111595).

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(x/(1-x))/Sqrt(1-x^2))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Jun 09 2018
  • Mathematica
    Table[Abs[HermiteH[n, I/Sqrt[2]]]^2/2^n, {n, 0, 20}] (* Vladimir Reshetnikov, Oct 11 2016 *)
    CoefficientList[Series[Exp[t/(1-t)]/Sqrt[1-t^2],{t,0,100}],t] Range[0, 12]! (* Emanuele Munarini, Aug 31 2017 *)
  • PARI
    a(n)=if(n<0, 0, n!*polcoeff(exp(x/(1-x)+x*O(x^n))/sqrt(1-x^2+x*O(x^n)),n)) /* Michael Somos, Aug 30 2005 */
    
  • Python
    from sympy import hermite, Poly, sqrt, I
    def a(n): return abs(Poly(hermite(n, I/sqrt(2)), x))**2/2**n # Indranil Ghosh, May 26 2017
    

Formula

E.g.f.: exp(x/(1-x))/sqrt(1-x^2).
a(n) = A000085(n)^2. - Michael Somos, Aug 30 2005
Conjecture: a(n) -n*a(n-1) -n*(n-1)*a(n-2) +(n-1)*(n-2)^2*a(n-3)=0. - R. J. Mathar, Oct 05 2014
Remark: the above conjectured recurrence is true and can be easily obtained by the e.g.f. - Emanuele Munarini, Aug 31 2017
a(n) = |H_n(i/sqrt(2))|^2 / 2^n = H_n(i/sqrt(2)) * H_n(-i/sqrt(2)) / 2^n, where H_n(x) is n-th Hermite polynomial, i = sqrt(-1). - Vladimir Reshetnikov, Oct 11 2016
a(n) ~ exp(2*sqrt(n) - n - 1/2) * n^n / 2. - Vaclav Kotesovec, Oct 01 2017