cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112031 Numerator of 3/4 + 1/4 - 3/8 - 1/8 + 3/16 + 1/16 - 3/32 - 1/32 + 3/64 + ....

Original entry on oeis.org

3, 1, 5, 1, 11, 3, 21, 5, 43, 11, 85, 21, 171, 43, 341, 85, 683, 171, 1365, 341, 2731, 683, 5461, 1365, 10923, 2731, 21845, 5461, 43691, 10923, 87381, 21845, 174763, 43691, 349525, 87381, 699051, 174763, 1398101, 349525, 2796203, 699051, 5592405
Offset: 0

Views

Author

Reinhard Zumkeller, Aug 27 2005

Keywords

Comments

Numerator of partial sums of A112030(n)/A016116(n+4), denominators = A112032;
a(n)/A112032(n) - 2/3 = (-1)^floor(n/2) / A112033(n);
lim_{n->infinity} a(n)/A112032(n) = 2/3.

References

  • G. Pólya and G. Szegő, Problems and Theorems in Analysis I (Springer 1924, reprinted 1972), Part One, Chap. 4, Sect. 1, Problem 148.

Crossrefs

Cf. A016116, A112030, A112032, A112033, A001045 (bisections).

Programs

  • Magma
    [(2^(Floor(n/2) + 2 + (-1)^n) + (-1)^Floor(n/2)) / 3: n in [0..50]]; // Vincenzo Librandi, Aug 17 2011
    
  • Mathematica
    LinearRecurrence[{0,1,0,2},{3,1,5,1},50] (* Harvey P. Dale, Dec 31 2017 *)
  • PARI
    m=50; v=concat([3,1,5,1], vector(m-4)); for(n=5, m, v[n]=v[n-2] +2*v[n-4]); v \\ G. C. Greubel, Nov 08 2018

Formula

a(n) = (2^(floor(n/2) + 2 + (-1)^n) + (-1)^floor(n/2)) / 3.
From Colin Barker, Apr 05 2013: (Start)
a(n) = a(n-2) + 2*a(n-4);
g.f.: (2*x^2+x+3) / ((1+x^2)*(1-2*x^2)). (End)

Extensions

a(22) corrected by Vincenzo Librandi, Aug 17 2011