cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A112030 a(n) = (2 + (-1)^n) * (-1)^floor(n/2).

Original entry on oeis.org

3, 1, -3, -1, 3, 1, -3, -1, 3, 1, -3, -1, 3, 1, -3, -1, 3, 1, -3, -1, 3, 1, -3, -1, 3, 1, -3, -1, 3, 1, -3, -1, 3, 1, -3, -1, 3, 1, -3, -1, 3, 1, -3, -1, 3, 1, -3, -1, 3, 1, -3, -1, 3, 1, -3, -1, 3, 1, -3, -1, 3, 1, -3, -1, 3, 1, -3, -1, 3, 1, -3, -1, 3, 1, -3, -1, 3, 1
Offset: 0

Views

Author

Reinhard Zumkeller, Aug 27 2005

Keywords

Comments

The fractions A112031(n)/A112032(n) give the partial sums of a(n)/floor((n+4)/2).
Sum of the two Cartesian coordinates from the image of the point (2,1) after n 90-degree counterclockwise rotations about the origin. - Wesley Ivan Hurt, Jul 06 2013

Crossrefs

Programs

Formula

a(n) = A010684(n+1) * (-1)^floor(n/2).
O.g.f.: (3+x)/(1+x^2). - R. J. Mathar, Jan 09 2008

A112032 Denominator of 3/4 + 1/4 - 3/8 - 1/8 + 3/16 + 1/16 - 3/32 - 1/32 + 3/64 ...

Original entry on oeis.org

4, 1, 8, 2, 16, 4, 32, 8, 64, 16, 128, 32, 256, 64, 512, 128, 1024, 256, 2048, 512, 4096, 1024, 8192, 2048, 16384, 4096, 32768, 8192, 65536, 16384, 131072, 32768, 262144, 65536, 524288, 131072, 1048576, 262144, 2097152, 524288, 4194304, 1048576
Offset: 0

Views

Author

Reinhard Zumkeller, Aug 27 2005

Keywords

Comments

Denominator of partial sums of A112030(n)/A016116(n+4), numerators = A112031;
A112031(n)/a(n) - 2/3 = (-1)^floor(n/2) / A112033(n);
lim_{n->infinity} A112031(n)/a(n) = 2/3.

References

  • G. Pólya and G. Szegő, Problems and Theorems in Analysis I (Springer 1924, reprinted 1972), Part One, Chap. 4, Sect. 1, Problem 148.

Crossrefs

Programs

  • Magma
    [2^(Floor(n/2) + 1 + (-1)^n): n in [0..50]]; // Vincenzo Librandi, Aug 17 2011
    
  • Mathematica
    LinearRecurrence[{0,2},{4,1},50] (* following conjecture in Formula field above *) (* Harvey P. Dale, Dec 21 2014 *)
  • PARI
    m=50; v=concat([4,1], vector(m-2)); for(n=3, m, v[n]=2*v[n-2]); v \\ G. C. Greubel, Nov 08 2018

Formula

a(n) = 2^(floor(n/2) + 1 + (-1)^n) = 2^A084964(n).
Conjectures from Colin Barker, Apr 05 2013: (Start)
a(n) = 2*a(n-2).
G.f.: (x+4) / (1-2*x^2). (End)

Extensions

a(21) corrected by Vincenzo Librandi, Aug 17 2011

A112033 a(n) = 3 * 2^(floor(n/2) + 1 + (-1)^n).

Original entry on oeis.org

12, 3, 24, 6, 48, 12, 96, 24, 192, 48, 384, 96, 768, 192, 1536, 384, 3072, 768, 6144, 1536, 12288, 3072, 24576, 6144, 49152, 12288, 98304, 24576, 196608, 49152, 393216, 98304, 786432, 196608, 1572864, 393216, 3145728, 786432, 6291456, 1572864
Offset: 0

Views

Author

Reinhard Zumkeller, Aug 27 2005

Keywords

References

  • George Pólya and Gábor Szegő, Problems and Theorems in Analysis I (Springer 1924, reprinted 1972), Part One, Chapter 4, Sect. 1, Problem 148.

Crossrefs

Programs

Formula

a(n) = 1 / abs(A112031(n)/A112032(n) - 2/3). (previous name)
a(n) = 3*2^A084964(n) = 3*A112032(n).
From Ralf Stephan, Jul 16 2013: (Start)
Recurrence: a(n) = 2a(n-2), a(0)=12, a(1)=3.
G.f.: (6*x+24)/(1-2*x^2). (End)
From Amiram Eldar, May 11 2025: (Start)
Sum_{n>=0} 1/a(n) = 5/6.
Sum_{n>=0} (-1)^n/a(n) = -1/2. (End)

A112034 1 / (A010684(n)/A016116(n+5) - 1/A112033(n)).

Original entry on oeis.org

6, 24, 12, 48, 24, 96, 48, 192, 96, 384, 192, 768, 384, 1536, 768, 3072, 1536, 6144, 3072, 12288, 6144, 24576, 12288, 49152, 24576, 98304, 49152, 196608, 98304, 393216, 19660, 8, 786432, 393216, 1572864, 786432, 3145728, 1572864, 6291456
Offset: 0

Views

Author

Reinhard Zumkeller, Aug 27 2005

Keywords

Comments

a(n) = 3*2^A052938(n).

Crossrefs

Showing 1-4 of 4 results.