cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A336064 Numbers divisible by the maximal exponent in their prime factorization (A051903).

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79
Offset: 1

Views

Author

Amiram Eldar, Jul 07 2020

Keywords

Comments

The asymptotic density of this sequence is A336065 = 0.848957... (Schinzel and Šalát, 1994).

Examples

			4 = 2^2 is a term since A051903(4) = 2 is a divisor of 4.
		

References

  • József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, chapter 3, p. 331.

Crossrefs

A005117 (except for 1) is subsequence.

Programs

  • Mathematica
    H[1] = 0; H[n_] := Max[FactorInteger[n][[;; , 2]]]; Select[Range[2, 100], Divisible[#, H[#]] &]
  • PARI
    isok(m) = if (m>1, (m % vecmax(factor(m)[,2])) == 0); \\ Michel Marcus, Jul 08 2020

A112250 Numbers m such that m mod floor(log_2(m)) > 0.

Original entry on oeis.org

5, 7, 8, 10, 11, 13, 14, 17, 18, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 91, 92, 93
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 30 2005

Keywords

Comments

The asymptotic density of this sequence is 1 (Cooper and Kennedy, 1989). - Amiram Eldar, Jul 10 2020

Crossrefs

Complement of A112249.
A112251 is a subsequence.

Programs

  • Maple
    seq(op(select(t -> t mod d > 0, [$2^d .. 2^(d+1)-1])),d=1..6); # Robert Israel, Aug 27 2020

Formula

A112248(a(n)) > 0.

Extensions

Name changed by Robert Israel, Aug 27 2020

A336066 Numbers k such that the exponent of the highest power of 2 dividing k (A007814) is a divisor of k.

Original entry on oeis.org

2, 4, 6, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 34, 36, 38, 42, 44, 46, 48, 50, 52, 54, 58, 60, 62, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 90, 92, 94, 98, 100, 102, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 130, 132, 134, 138, 140, 142, 144
Offset: 1

Views

Author

Amiram Eldar, Jul 07 2020

Keywords

Comments

All the terms are even by definition.
If m is a term then m*(2*k+1) is a term for all k>=1.
Šalát (1994) proved that the asymptotic density of this sequence is 0.435611... (A336067).

Examples

			2 is a term since A007814(2) = 1 is a divisor of 2.
		

Crossrefs

A001146 and A039956 are subsequences.

Programs

  • Mathematica
    Select[Range[2, 150, 2], Divisible[#, IntegerExponent[#, 2]] &]
  • PARI
    isok(m) = if (!(m%2), (m % valuation(m,2)) == 0); \\ Michel Marcus, Jul 08 2020
    
  • Python
    from itertools import count, islice
    def A336066_gen(startvalue=2): # generator of terms >= startvalue
        return filter(lambda n:n%(~n&n-1).bit_length()==0,count(max(startvalue+startvalue&1,2),2))
    A336066_list = list(islice(A336066_gen(startvalue=3),30)) # Chai Wah Wu, Jul 10 2022

A112248 a(n) = n mod floor(log_2(n)).

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4
Offset: 2

Views

Author

Reinhard Zumkeller, Aug 30 2005

Keywords

Comments

a(A112249(n)) = 0, a(A112250(n)) > 0, a(A112251(n)) = 1.

Crossrefs

Programs

  • Maple
    seq(seq(n mod d, n=2^d .. 2^(d+1)-1),d=1..8); # Robert Israel, Aug 27 2020
  • Mathematica
    Table[Mod[n, Floor @ Log2[n]], {n, 2, 100}] (* Amiram Eldar, Aug 27 2020 *)
  • PARI
    a(n) = n % logint(n, 2); \\ Michel Marcus, Aug 27 2020

Extensions

Name edited by Michel Marcus, Aug 27 2020

A336068 Numbers k such that the exponent of the highest power of 3 dividing k (A007949) is a divisor of k.

Original entry on oeis.org

3, 6, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 48, 51, 54, 57, 60, 66, 69, 72, 75, 78, 84, 87, 90, 93, 96, 102, 105, 108, 111, 114, 120, 123, 126, 129, 132, 135, 138, 141, 144, 147, 150, 156, 159, 165, 168, 174, 177, 180, 183, 186, 189, 192, 195, 198, 201, 204
Offset: 1

Views

Author

Amiram Eldar, Jul 07 2020

Keywords

Comments

All the terms are divisible by 3 by definition.
Šalát (1994) proved that the asymptotic density of this sequence is 0.287106... (A336069).

Examples

			3 is a term since A007949(3) = 1 is a divisor of 3.
		

Crossrefs

A055777 is a subsequence.

Programs

  • Mathematica
    Select[Range[200], Mod[#, 3] == 0 && Divisible[#, IntegerExponent[#, 3]] &]
  • PARI
    isok(m) = if (!(m%3), (m % valuation(m,3)) == 0); \\ Michel Marcus, Jul 08 2020

A336063 Numbers divisible by the minimal exponent in their prime factorization (A051904).

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74
Offset: 1

Views

Author

Amiram Eldar, Jul 07 2020

Keywords

Comments

The asymptotic density of this sequence is 1 (Schinzel and Šalát, 1994).

Examples

			4 = 2^2 is a term since A051904(4) = 2 is a divisor of 4.
		

References

  • József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, chapter 3, p. 331.

Crossrefs

A005117 (except for 1) is subsequence.

Programs

  • Mathematica
    h[1] = 0; h[n_] := Min[FactorInteger[n][[;; , 2]]]; Select[Range[2, 100], Divisible[#, h[#]] &]
    Select[Range[2,100],Divisible[#,Min[FactorInteger[#][[All,2]]]]&] (* Harvey P. Dale, Aug 31 2020 *)
  • PARI
    isok(m) = if (m>1, (m % vecmin(factor(m)[,2])) == 0); \\ Michel Marcus, Jul 08 2020
Showing 1-6 of 6 results.