A112389
Number of ways, counted up to symmetry, to build a contiguous building with n LEGO blocks of size 2 X 4.
Original entry on oeis.org
1, 24, 1560, 119580, 10166403, 915103765, 85747377755, 8274075616387, 816630819554486, 82052796578652749
Offset: 1
- Anthony Lane, The Joy of Bricks, The New Yorker, Apr 27-May 04, 1998, pp. 96-103.
- M. Abrahamsen and S. Eilers, On the asymptotic enumeration of LEGO structures, Exper. Math. 20 (2) (2011) 145-152.
- B. Durhuus and S. Eilers, On the entropy of LEGO, arXiv:math/0504039 [math.CO], 2005.
- B. Durhuus and S. Eilers, On the entropy of LEGO, J. Appl. Math. Comput. 45 (1-2) (2014), 433-448.
- S. Eilers, The LEGO counting problem, Amer. Math. Monthly, 123 (May 2016), 415-426.
- S. Eilers and M. Abrahamsen, Efficient counting of LEGO structures, March 30 2007.
- Index entry for sequences related to LEGO blocks.
A123762
Number of ways, counted up to symmetry, to build a contiguous building with n LEGO blocks of size 1 X 2.
Original entry on oeis.org
1, 4, 37, 375, 4493, 56848, 753536, 10283622, 143607345, 2041497919, 29446248496, 429858432108
Offset: 1
- M. Abrahamsen and S. Eilers, On the asymptotic enumeration of LEGO structures, Exper Math. 20 (2) (2011) 145-152.
- B. Durhuus and S. Eilers, On the entropy of LEGO, arXiv:math/0504039 [math.CO], 2005.
- B. Durhuus and S. Eilers, On the entropy of LEGO, J. Appl. Math. Comput. 45 (1-2) (2014), 433-448.
- S. Eilers, A LEGO Counting problem, 2005.
- S. Eilers, The LEGO counting problem, Amer. Math. Monthly, 123 (May 2016), 415-426.
- Index entry for sequences related to LEGO blocks
A272690
a(n) = 22*Sum_{i=0..n-2} 46^i*2^(n-2-i) + 2^(n-1).
Original entry on oeis.org
1, 24, 1060, 48672, 2238736, 102981504, 4737148480, 217908828672, 10023806116096, 461095081334784, 21210373741388800, 975677192103862272, 44881150836777619456, 2064532938491770404864, 94968515170621438443520, 4368551697848586168041472, 200953378101034963729186816
Offset: 1
- Seiichi Manyama, Table of n, a(n) for n = 1..602
- S. Eilers, The LEGO counting problem, Amer. Math. Monthly, 123 (May 2016), 415-426.
- Jørgen Kirk Kristiansen, Taljonglering med klodser - eller talrige klodser, Klodshans 1974 [In Danish].
- Fabien Pazuki, Combinatoire des briques LEGO, Images des Mathématiques, CNRS, 2016. [In French]
- Index entry for sequences related to LEGO blocks
- Index entries for linear recurrences with constant coefficients, signature (48,-92).
-
t1:=n->22*add(46^i*2^(n-2-i),i=0..n-2)+2^(n-1);
t2:=[seq(t1(n),n=1..20)];
-
Table[22*Sum[46^k * 2^(n-k-2), {k,0,n-2}] + 2^(n-1), {n,1,25}] (* G. C. Greubel, May 31 2016 *)
-
A272690(n) = 2^(n - 2)*(1 + 23^(n - 1)) \\ Rick L. Shepherd, Jun 02 2016
-
def A272690(n)
22 * (0..n - 2).inject(0){|s, i| s + 46 ** i * 2 ** (n - 2 - i)} + 2 ** (n - 1)
end # Seiichi Manyama, May 31 2016
Showing 1-3 of 3 results.
Comments