A112494 Sixth diagonal of the Stirling2 triangle A048993 and sixth column of triangle A008278.
1, 63, 966, 7770, 42525, 179487, 627396, 1899612, 5135130, 12662650, 28936908, 62022324, 125854638, 243577530, 452329200, 809944464, 1404142047, 2364885369, 3880739170, 6220194750, 9759104355, 15015551265, 22693687380, 33738295500, 49402080000, 71327958156
Offset: 6
Links
- T. D. Noe, Table of n, a(n) for n = 6..1000
- Steve Butler and Pavel Karasik, A note on nested sums, J. Int. Seq. 13 (2010), 10.4.4, page 5.
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See p. 29.
- Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
Programs
-
Mathematica
Table[StirlingS2[n, n-5], {n, 6, 100}] (* Vladimir Joseph Stephan Orlovsky, Sep 27 2008 *)
-
PARI
for(n=6,50, print1(stirling(n,n-5,2), ", ")) \\ G. C. Greubel, Oct 22 2017
-
PARI
Vec(x^6*(1 + 52*x + 328*x^2 + 444*x^3 + 120*x^4) / (1 - x)^11 + O(x^40)) \\ Colin Barker, Nov 04 2017
-
Sage
[stirling_number2(n,n-5) for n in range(6, 30)] # Zerinvary Lajos, May 16 2009
Formula
a(n) = sum(A008517(5, m+1)*binomial(n+5-m, 2*5), m=0..4) from the o.g.f. See p. 257 eq. (6.43) of the R. L. Graham et al. book quoted in A008517.
O.g.f.: x*sum(A008517(5, m+1)*x^m, m=0..4)/(1-x)^11 with the fifth row [1, 52, 328, 444, 120] of the second-order Eulerian triangle A008517.
E.g.f. with offset n=-4: exp(x)*sum(A112493(5, m)*(x^(m+5))/(m+5)!, m=0..5) with the k=5 row [1, 57, 546, 1750, 2205, 945] of triangle A112493.
a(n) = sum(A112493(5, m)*binomial(n+4, 5+m), m=0..5) from the e.g.f. (coefficients from A112493(5, m) are [1, 57, 546, 1750, 2205, 945]).
With an offset of 1 the o.g.f. is D^5(x/(1-x)), where D is the operator x/(1-x)*d/dx. - Peter Bala, Jul 02 2012
G.f.: x^6*(1 + 52*x + 328*x^2 + 444*x^3 + 120*x^4) / (1 - x)^11. - Colin Barker, Nov 04 2017