cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A005231 Odd abundant numbers (odd numbers m whose sum of divisors exceeds 2m).

Original entry on oeis.org

945, 1575, 2205, 2835, 3465, 4095, 4725, 5355, 5775, 5985, 6435, 6615, 6825, 7245, 7425, 7875, 8085, 8415, 8505, 8925, 9135, 9555, 9765, 10395, 11025, 11655, 12285, 12705, 12915, 13545, 14175, 14805, 15015, 15435, 16065, 16695, 17325, 17955
Offset: 1

Views

Author

Keywords

Comments

While the first even abundant number is 12 = 2^2*3, the first odd abundant is 945 = 3^3*5*7, the 232nd abundant number.
Schiffman notes that 945+630k is in this sequence for all k < 52. Most of the first initial terms are of the form. Among the 1996 terms below 10^6, 1164 terms are of that form, and only 26 terms are not divisible by 5, cf. A064001. - M. F. Hasler, Jul 16 2016
From M. F. Hasler, Jul 28 2016: (Start)
Any multiple of an abundant number is again abundant, see A006038 for primitive terms, i.e., those which are not a multiple of an earlier term.
An odd abundant number must have at least 3 distinct prime factors, and 5 prime factors when counted with multiplicity (A001222), whence a(1) = 3^3*5*7. To see this, write the relative abundancy A(N) = sigma(N)/N = sigma[-1](N) as A(Product p_i^e_i) = Product (p_i-1/p_i^e_i)/(p_i-1) < Product p_i/(p_i-1).
See A115414 for terms not divisible by 3, A064001 for terms not divisible by 5, A112640 for terms coprime to 5*7, and A047802 for other generalizations.
As of today, we don't know of a difference between this set S of odd abundant numbers and the set S' of odd semiperfect numbers: Elements of S' \ S would be perfect (A000396), and elements of S \ S' would be weird (A006037), but no odd weird or perfect number is known. (End)
For any term m in this sequence, A064989(m) is also an abundant number (in A005101), and for any term x in A115414, A064989(x) is in this sequence. If there are no odd perfect numbers, then applying A064989 to these terms and sorting into ascending order gives A337386. - Antti Karttunen, Aug 28 2020
There exist infinitely many terms m such that 2*m+1 is also a term. An example of such a term is given by m = 985571808130707987847768908867571007187. - Max Alekseyev, Nov 16 2023

References

  • W. Dunham, Euler: The Master of Us All, The Mathematical Association of America Inc., Washington, D.C., 1999, p. 13.
  • R. K. Guy, Unsolved Problems in Number Theory, B2.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 128.

Crossrefs

Programs

  • Maple
    A005231 := proc(n) option remember ; local a ; if n = 1 then 945 ; else for a from procname(n-1)+2 by 2 do if numtheory[sigma](a) > 2*a then return a; end if; end do: end if; end proc: # R. J. Mathar, Mar 20 2011
  • Mathematica
    fQ[n_] := DivisorSigma[1, n] > 2n; Select[1 + 2Range@ 9000, fQ] (* Robert G. Wilson v, Mar 20 2011 *)
  • PARI
    je=[]; forstep(n=1,15000,2, if(sigma(n)>2*n, je=concat(je,n))); je
    
  • PARI
    is_A005231(n)={bittest(n,0)&&sigma(n)>2*n} \\ M. F. Hasler, Jul 28 2016
    
  • PARI
    list(lim)=my(v=List()); forfactored(n=945,lim\1, if(n[2][1,1]>2 && sigma(n,-1)>2, listput(v,n[1]))); Vec(v) \\ Charles R Greathouse IV, Apr 21 2022

Formula

a(n) ~ k*n for some constant k (perhaps around 500). - Charles R Greathouse IV, Apr 21 2022
482.8 < k < 489.8 (based on density bounds by Kobayashi et al., 2009). - Amiram Eldar, Jul 17 2022

Extensions

More terms from James Sellers

A115414 Odd abundant numbers not divisible by 3.

Original entry on oeis.org

5391411025, 26957055125, 28816162375, 33426748355, 34393484125, 37739877175, 40342627325, 48150877775, 50866790975, 53356378075, 55959128225, 59305521275, 60711976325, 61164628525, 63395557225, 64899009175, 67275433225, 68972878975, 70088343325, 74922022175, 75665665075
Offset: 1

Views

Author

Sergio Pimentel, Mar 08 2006

Keywords

Comments

An odd abundant number (A005231) not divisible by 3 must have at least 7 distinct prime factors (e.g., 5^4*7^2*11^2*13*17*19*23) and be >= 5*29#/3# = 5^2*7*11*13*17*19*23*29 = 5391411025 = A047802(2) = a(1). This is most easily seen by writing the relative abundancy A(N) = sigma(N)/2N = sigma[-1](N) as A(Product p_i^e_i) = (1/2)*Product (p_i-1/p_i^e_i)/(p_i-1) < (1/2)*Product p_i/(p_i-1). See A064001 for odd abundant numbers not divisible by 5. - M. F. Hasler, Jul 27 2016
This is not a subsequence of A248150. For example, 81324229811825 and 37182145^2 = 1382511906801025 are terms, with sigma(.) == 2 (mod 4) and sigma(.) == 3 (mod 4) respectively. - Amiram Eldar, Aug 24 2020

Examples

			a(1)=5391411025 because it is the smallest abundant number (sigma(n)/n =~ 2.003) that is not divisible by 2 or 3.
		

Crossrefs

Programs

Extensions

Added missing term 55959128225 and a(14)-a(16) from Donovan Johnson, Dec 29 2008
a(17)-a(20) from Donovan Johnson, Dec 01 2011
More terms from M. F. Hasler, Jul 28 2016

A007684 Prime(n)*...*prime(a(n)) is the least product of consecutive primes that is non-deficient.

Original entry on oeis.org

2, 6, 11, 21, 35, 51, 73, 98, 130, 167, 204, 249, 296, 347, 406, 471, 538, 608, 686, 768, 855, 950, 1050, 1156, 1266, 1377, 1495, 1621, 1755, 1898, 2049, 2194, 2347, 2504, 2670, 2837, 3013, 3194, 3380, 3573, 3771, 3974, 4187, 4401, 4625, 4856
Offset: 1

Views

Author

Keywords

Comments

Subscript of the smallest primorial number that when divided by the (n-1)-th primorial number gives an abundant number.
Products of consecutive primes started with prime(a) up to prime(b) result in abundant squarefree numbers if b is large enough and provides perhaps the least squarefree solutions to Rivera Puzzle 329 and its generalization.
Adding a new prime p to the product increases the relative abundancy sigma(N)/N by a factor 1+1/p. This leads to a simple and fast algorithm, see the PARI code. - M. F. Hasler, Jul 30 2016

Examples

			n=1: a(1)=2 means that primorial(2)=6 divided by primorial(1-1)=1 gives the quotient 6/1=6 which is just non-deficient (being a perfect number);
n=3: a(n)=11 because prime(3)=5, primorial(11) = 2*3*5*...*29*31, primorial(3-1) = 2*3 = 6.
p#(11)/p#(2) = 3*5*7*11*13*17*19*23*29*31 = 33426748355 = q and sigma(q)/q = 2.00097 > 2 so q is an abundant number. Also p#(10)/p#(3-1) is not yet abundant.
		

Crossrefs

Cf. A005100, A007686, A007702, A007707 (an essentially identical sequence).

Programs

  • Mathematica
    spr[x_, y_] :=Apply[Times, Table[(Prime[w]+1)/(Prime[w]), {w, x, y}]];
    Table[Min[Flatten[Position[Table[Floor[spr[n, w]], {w, 1, 1000}], 2]]], {n, 1, 20}] (* Labos Elemer, Sep 19 2005 *)
  • PARI
    a=1;i=0;for(n=1,99,while(2>a*=1+1/prime(i++),);print1(i",");a/=1+1/prime(n)) \\ M. F. Hasler, Jul 30 2016

Formula

a(n) is the minimal x such that floor(sigma(p#(x)/p#(n-1)) / (p#(x)/p#(n-1))) = 2, where p#(w) is the w-th primorial number, the product of first w prime numbers. For a>b, the p#(a)/p#(b)=A002110(a)/A002110(b) quotients are prime(b+1)*prime(b+2)*...*prime(a).

Extensions

Additional comments from Labos Elemer, Sep 19 2005
More terms from Don Reble, Nov 10 2005
Edited by N. J. A. Sloane, Dec 22 2006

A112644 Odd and squarefree abundant numbers not divisible by 5.

Original entry on oeis.org

22309287, 28129101, 30069039, 34051017, 35888853, 36399363, 38057019, 39768729, 40681641, 41708667, 43444401, 45588543, 45894849, 48141093, 48555507, 50489439, 51294243, 51408357, 53804751, 54777723, 55186131, 56429373, 57228171, 58555497, 59168109
Offset: 1

Views

Author

Labos Elemer, Sep 20 2005

Keywords

Comments

The least term that is not divisible by 3 is 73#/5# = Product_{k=4..21} prime(k) = 1357656019974967471687377449. - Amiram Eldar, Aug 15 2024

Examples

			99906807 = 3*7*11*13*17*19*103 is a term since it is an odd squarefree number that is not divisible by 5, and sigma(99906807) = 201277440 > 2*99906807.
		

Crossrefs

Programs

  • Mathematica
    ta={{0}};Do[g=n;s=DivisorSigma[1, n]-2*n; If[Greater[s, 0]&&Equal[Abs[MoebiusMu[n]], 1]&& !Equal[Mod[n, 2], 0]&&!Equal[Mod[n, 5], 0], Print[n, PrimeFactorList[n], s];ta=Append[ta, n]], {n, 10000000, 100000000}];{ta=Delete[ta, 1], g}
  • PARI
    issfab(k) = my(f = factor(k)); issquarefree(f) && sigma(f, -1) > 2;
    is(k) = gcd(k, 10) == 1 && issfab(k); \\ Amiram Eldar, Aug 15 2024

A112642 Primorial number quotients arising in A007684: a(n) = A002110(A007684(n))/A002110(n-1).

Original entry on oeis.org

6, 15015, 33426748355, 1357656019974967471687377449, 7105630242567996762185122555313528897845637444413640621, 1924344668948998025181489521338230544342953524990122861050411878226909135705454891961917517
Offset: 1

Views

Author

Labos Elemer, Sep 19 2005

Keywords

Comments

These numbers are (perhaps the smallest) squarefree solutions to Puzzle 329 of Rivera; a(n) is abundant, not divisible by the first n-1 prime numbers, i.e., the least prime divisor of a(n) is the n-th prime number.
Duplicate of A007702.

Examples

			The corresponding sigma(a(n))/a(n) abundance ratios are as follows: 2, 2.14825, 2.00097, 2.01433, 2.00587, 2.00101, ...;
the terms have 2,3,5,7,11,... as least prime divisors.
		

Crossrefs

Formula

a(n) = A002110(A007684(n))/A002110(n-1).

Extensions

Term a(2) and name corrected by Andrey Zabolotskiy, Jul 16 2022
Showing 1-5 of 5 results.