cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A005231 Odd abundant numbers (odd numbers m whose sum of divisors exceeds 2m).

Original entry on oeis.org

945, 1575, 2205, 2835, 3465, 4095, 4725, 5355, 5775, 5985, 6435, 6615, 6825, 7245, 7425, 7875, 8085, 8415, 8505, 8925, 9135, 9555, 9765, 10395, 11025, 11655, 12285, 12705, 12915, 13545, 14175, 14805, 15015, 15435, 16065, 16695, 17325, 17955
Offset: 1

Views

Author

Keywords

Comments

While the first even abundant number is 12 = 2^2*3, the first odd abundant is 945 = 3^3*5*7, the 232nd abundant number.
Schiffman notes that 945+630k is in this sequence for all k < 52. Most of the first initial terms are of the form. Among the 1996 terms below 10^6, 1164 terms are of that form, and only 26 terms are not divisible by 5, cf. A064001. - M. F. Hasler, Jul 16 2016
From M. F. Hasler, Jul 28 2016: (Start)
Any multiple of an abundant number is again abundant, see A006038 for primitive terms, i.e., those which are not a multiple of an earlier term.
An odd abundant number must have at least 3 distinct prime factors, and 5 prime factors when counted with multiplicity (A001222), whence a(1) = 3^3*5*7. To see this, write the relative abundancy A(N) = sigma(N)/N = sigma[-1](N) as A(Product p_i^e_i) = Product (p_i-1/p_i^e_i)/(p_i-1) < Product p_i/(p_i-1).
See A115414 for terms not divisible by 3, A064001 for terms not divisible by 5, A112640 for terms coprime to 5*7, and A047802 for other generalizations.
As of today, we don't know of a difference between this set S of odd abundant numbers and the set S' of odd semiperfect numbers: Elements of S' \ S would be perfect (A000396), and elements of S \ S' would be weird (A006037), but no odd weird or perfect number is known. (End)
For any term m in this sequence, A064989(m) is also an abundant number (in A005101), and for any term x in A115414, A064989(x) is in this sequence. If there are no odd perfect numbers, then applying A064989 to these terms and sorting into ascending order gives A337386. - Antti Karttunen, Aug 28 2020
There exist infinitely many terms m such that 2*m+1 is also a term. An example of such a term is given by m = 985571808130707987847768908867571007187. - Max Alekseyev, Nov 16 2023

References

  • W. Dunham, Euler: The Master of Us All, The Mathematical Association of America Inc., Washington, D.C., 1999, p. 13.
  • R. K. Guy, Unsolved Problems in Number Theory, B2.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 128.

Crossrefs

Programs

  • Maple
    A005231 := proc(n) option remember ; local a ; if n = 1 then 945 ; else for a from procname(n-1)+2 by 2 do if numtheory[sigma](a) > 2*a then return a; end if; end do: end if; end proc: # R. J. Mathar, Mar 20 2011
  • Mathematica
    fQ[n_] := DivisorSigma[1, n] > 2n; Select[1 + 2Range@ 9000, fQ] (* Robert G. Wilson v, Mar 20 2011 *)
  • PARI
    je=[]; forstep(n=1,15000,2, if(sigma(n)>2*n, je=concat(je,n))); je
    
  • PARI
    is_A005231(n)={bittest(n,0)&&sigma(n)>2*n} \\ M. F. Hasler, Jul 28 2016
    
  • PARI
    list(lim)=my(v=List()); forfactored(n=945,lim\1, if(n[2][1,1]>2 && sigma(n,-1)>2, listput(v,n[1]))); Vec(v) \\ Charles R Greathouse IV, Apr 21 2022

Formula

a(n) ~ k*n for some constant k (perhaps around 500). - Charles R Greathouse IV, Apr 21 2022
482.8 < k < 489.8 (based on density bounds by Kobayashi et al., 2009). - Amiram Eldar, Jul 17 2022

Extensions

More terms from James Sellers

A337386 Numbers k for which A003973(k) >= 2*A003961(k).

Original entry on oeis.org

120, 180, 240, 300, 360, 420, 480, 504, 540, 600, 630, 660, 720, 780, 840, 900, 924, 960, 990, 1008, 1020, 1050, 1080, 1092, 1140, 1170, 1200, 1260, 1320, 1380, 1440, 1470, 1500, 1512, 1560, 1620, 1650, 1680, 1740, 1800, 1848, 1860, 1890, 1920, 1980, 2016, 2040, 2100, 2160, 2184, 2220, 2280, 2310, 2340, 2400, 2460
Offset: 1

Views

Author

Antti Karttunen, Aug 27 2020

Keywords

Comments

Provided that there are no odd perfect numbers, then these are equal to numbers k for which A003961(k) is in A005231, i.e., numbers that become odd abundant numbers when prime-shifted once.
Not all terms are even. The first odd term is a(8313165) = 334639305 = A064989(A115414(1)). (See A337385). For any odd term x present, A064989(x) is also present, for example, A064989(334639305) = 19399380 = a(482324).

Crossrefs

Subsequence of A005101, of A337381, and of A246282.
Subsequences: A337385 (odd terms), A337479 (primitive elements).

Programs

  • Mathematica
    Select[Range[2500], If[# == 1, 1, DivisorSigma[1, # ]] >= 2# &@ Apply[Times, FactorInteger[#] /. {p_, e_} /; e > 0 :> Prime[PrimePi@ p + 1]^e] &] (* Michael De Vlieger, Aug 27 2020 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    isA337386(n) = (sigma(A003961(n))>=2*A003961(n));

A306497 Abundant numbers that differ from the next abundant number by 5.

Original entry on oeis.org

5391411025, 26957055120, 28816162375, 33426748350, 34393484125, 37739877175, 40342627320, 48150877770, 50866790970, 53356378075, 59305521270, 60711976320, 61164628525, 63395557225, 64899009175, 67275433225, 70088343325, 74922022170, 75665665075, 76781129425
Offset: 1

Views

Author

Sergio Pimentel, Feb 19 2019

Keywords

Comments

Since all multiples of 6 are abundant, numbers in this sequence have to be abundant numbers of the form 6n or 6n + 1. Most common difference between abundant numbers is 6, followed by 2, 4, 3, 1. 5 is the least common.

Examples

			a(1) = 5391411025 is in the sequence since it is abundant and the next abundant number is 5391411030 which is a(1)+5 and all the numbers in between are deficient.
		

Crossrefs

Programs

  • PARI
    isok(n) = for(k=1, 4, if(sigma(n+k) > 2*(n+k), return(0))); (sigma(n) > 2*n) && (sigma(n+5) > 2*(n+5)); \\ Daniel Suteu, Jul 24 2019

Formula

Either a(n) or a(n)+5 are in A115414. - Amiram Eldar, Jul 16 2019

Extensions

More terms from Amiram Eldar, Jul 16 2019

A343306 Numbers k such that there is only 1 abundant number (A005101) among 6*k+1 through 6*k+5.

Original entry on oeis.org

3, 6, 9, 11, 13, 14, 16, 17, 18, 23, 26, 29, 32, 33, 34, 36, 37, 43, 45, 46, 50, 51, 53, 56, 60, 61, 63, 65, 66, 69, 73, 74, 76, 77, 79, 81, 83, 86, 88, 90, 91, 93, 95, 96, 101, 102, 103, 106, 107, 108, 113, 116, 117, 121, 122, 123, 124, 126, 128, 130, 133, 135
Offset: 1

Views

Author

Jianing Song, Apr 11 2021

Keywords

Comments

The smallest k such that 6*k+3 is the only abundant number among 6*k+1 through 6*k+5 is k = 157, with 6*k+3 = 945 = A005231(1).
The smallest k such that 6*k+1 is the only abundant number among 6*k+1 through 6*k+5 is k = 898568504, with 6*k+1 = 5391411025 = A115414(1).
The smallest k such that 6*k+5 is the only abundant number among 6*k+1 through 6*k+5 is k = 4492842520, with 6*k+5 = 26957055125 = A115414(2).

Examples

			13 is a term since 80 is the only abundant number among 79, 80, 81, 82 and 83.
962 is not a term since there are 2 abundant numbers (5775 and 5776) among 5773, 5774, 5775, 5776 and 5777.
		

Crossrefs

Cf. A005101 (abundant numbers), A005231 (odd abundant numbers), A115414 (5-rough abundant numbers), A343301.

Programs

A387165 Nondeficient numbers k for which A324644(k)/A324198(k) = 2.

Original entry on oeis.org

38745, 77805, 78435, 118755, 141075, 157815, 210735, 237195, 241605, 294975, 300105, 323505, 364455, 371925, 390195, 409185, 455715, 475335, 499905, 567945, 607635, 660825, 701415, 733005, 766395, 806085, 809325, 872235, 885465, 891135, 937755, 964845, 978705, 1101555, 1150065, 1201095, 1229445, 1265355, 1293705
Offset: 1

Views

Author

Antti Karttunen, Aug 28 2025

Keywords

Comments

First three nonmultiples of 5 occur at a(138), a(276), a(356) = 4446981, 8909901, 11234223. (Cf. A005231, A064001).

Crossrefs

Intersection of A023196 and A364286.

Programs

  • PARI
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    is_A387165(n) = if(sigma(n)<2*n, 0, my(u=A276086(n)); (gcd(sigma(n),u)==2*gcd(n,u)));

Formula

{k | sigma(k) >= 2*k, A324644(k) = 2*A324198(k)}.

A133849 Least odd primitive abundant numbers with no factor 3 and with 5^n but not 5^(n+1) as a factor.

Original entry on oeis.org

20169691981106018776756331, 33426748355, 5391411025, 26957055125, 134785275625, 673926378125, 3369631890625, 16848159453125, 84240797265625, 421203986328125, 2106019931640625, 10530099658203125, 52650498291015625, 263252491455078125, 1316262457275390625, 6581312286376953125
Offset: 0

Views

Author

Pierre CAMI, Jan 06 2008

Keywords

Comments

A subsequence of A115414, odd abundant numbers (A005231) not divisible by 3. The smallest of these equals a(2). All subsequent terms are a(n) = 5*a(n-1). - M. F. Hasler, Jul 28 2016

Examples

			a(0) = 20169691981106018776756331 = 5^0*7^2*11^2*13*17*19*23*29*31*37*41*43*47*53*59*61*67 = A047802(3), the least odd abundant number with no factor 3 or 5.
a(1) = 33426748355 = 5^1*7*11*13*17*19*23*29*31.
a(2) = 5391411025 = 5^2*7*11*13*17*19*23*29 = A115414(1) = A047802(2), the least odd abundant number with no factor 3.
		

Crossrefs

Programs

  • PARI
    A133849(n)=215656441*if(n>1,5^n,[3016998806898461,5][n+1]*31) \\ M. F. Hasler, Jul 28 2016

Formula

For all n >= 2, a(n) = 5^n*7*11*13*17*19*23*29. This can be seen from sigma[-1](5^n) = (5-1/5^n)/4 and sigma[-1](29#/5#) = 1.615... > 2/sigma[-1](5^n) for all n >= 2 (but not for n = 1), while sigma[-1](23#/5#) = 1.56... < 2*4/5 (and idem for any other factor omitted) is never large enough. - M. F. Hasler, Jul 28 2016

Extensions

Edited, a(3) corrected, and more terms added by M. F. Hasler, Jul 28 2016

A295042 Numbers k such that both k and (k+1) are abundant, and neither is divisible by 3.

Original entry on oeis.org

55959128224, 68972878975, 91653987424, 171967420624, 350441716624, 372944997424, 386136575824, 711480344575, 769856312224, 789255692224, 818564922175, 997039218175, 1071710665024, 1216042052224, 1340586071824, 1925671372624, 1954925637664, 2045947528624
Offset: 1

Views

Author

Amiram Eldar, Nov 13 2017

Keywords

Comments

Subsequence of A096399.
All terms are of the form 3j+1, with j = 18653042741, 22990959658, 30551329141, 57322473541, 116813905541, 124314999141, 128712191941, 237160114858, 256618770741, 263085230741, 272854974058, 332346406058, ...

Examples

			k = 55959128224 is in the sequence as sigma(k) > 2*k and sigma(k + 1) > 2*(k + 1). - _David A. Corneth_, Apr 11 2021
		

Crossrefs

Programs

  • Mathematica
    abQ[n_] := Mod[n, 3] > 0 && DivisorSigma[1, n] > 2 n; abQ1[n_] := abQ[n - 1]; abQ2[n_] := abQ[n + 1]; s = Import["b115414.txt", "Data"][[All, -1]]; s1 = Select[s, abQ1] - 1; s2 = Select[s, abQ2]; seq = Union[s1, s2] (* using the b-File from A115414 *)
  • PARI
    isoka(n) = (n%3) && (sigma(n) > 2*n);
    isok(n) = isoka(n) && isoka(n+1); \\ Michel Marcus, Nov 13 2017

Extensions

a(13)-a(18) from Giovanni Resta, Aug 22 2018

A337385 Odd numbers k for which A003973(k) >= 2*A003961(k).

Original entry on oeis.org

334639305, 1003917915, 1265809545, 1353106755, 1673196525, 2109682575, 2255177925, 2342475135, 2553826275, 2691663975, 2729952225, 2953555605, 2982654675, 3011753745, 3128150025, 3157249095, 3234846615, 3258330075, 3419140725, 3442113675, 3681032355, 3797428635, 3855626775, 4059320265, 4292112825, 4350310965
Offset: 1

Views

Author

Antti Karttunen, Aug 31 2020

Keywords

Comments

Provided that there are no odd perfect numbers, then applying A003961 to each term and sorting into ascending order gives A115414.
Apparently, all terms are divisible by 255255 = 3*5*7*11*13*17. - Hugo Pfoertner, Sep 24 2020

Crossrefs

Subsequence of A337386.

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    isA337385(n) = if(!(n%2),0,my(x=A003961(n)); (sigma(x)>=2*x));

A343357 7-rough abundant numbers.

Original entry on oeis.org

20169691981106018776756331, 21373852696395930345517903, 21975933054040886129898689, 23476198863254546445077041, 23782174126975753483041047, 23836908704943476736166573, 24137500239684251978741183, 24272002214551310731350839, 24955720586792192723783257, 24986334842265665051802619
Offset: 1

Views

Author

David A. Corneth, Apr 12 2021

Keywords

Comments

Each term has at least A001276(4) = 15 distinct prime factors and A108227(4) = 18 prime factors counted with multiplicity. - Jianing Song, Apr 13 2021
The smallest term with exactly 15 distinct prime factors is a(830) = 465709156638373299218537971 = 7^3 * 11^2 * 13^2 * 17^2 * 19 * 23 * ... * 61. - Jianing Song, Apr 14 2021

Examples

			k = 20169691981106018776756331 is in the sequence as its smallest prime factor is at least 7 and it is abundant as sigma(k) > 2*k.
		

Crossrefs

Programs

  • PARI
    is(n) = gcd(n, 30) == 1 && sigma(n) > 2*n

A133688 Least odd primitive abundant number with 3^n as a divisor, but not 3^(n+1).

Original entry on oeis.org

5391411025, 5775, 1575, 945, 81081, 78975, 1468935, 6375105, 436444281, 5356826865, 21873816315, 371922783705, 2241870572475, 158639164165575, 297836412308955, 1429674513582825, 13431279259253115, 100139192108634825
Offset: 0

Views

Author

Pierre CAMI, Jan 04 2008

Keywords

Examples

			5391411025=3^0 * 5^2 * 7 * 11 * 13 * 17 * 19 * 23 * 29 least odd abundant number with no factor 3.
5775 = 3^1 * 5^2 * 7 * 11.
1575 = 3^2 * 5^2 * 13.
945 = 3^3 * 5 * 7.
81081 = 3^4 * 7 * 11 * 13.
78975 = 3^5 * 5^2 * 13.
1468935 = 3^6 * 5 * 13 * 31.
6375105 = 3^7 * 5 * 11 * 53.
436444281 = 3^8 * 7 * 13 * 17 * 43.
		

Crossrefs

Cf. A006038 (odd primitive abundant numbers).
Cf. A115414 (odd abundant numbers not divisible by 3).

Programs

  • PARI
    isprab(v) = {my(sig = sigma(v)); if (sig < 2*v, return (0)); if (sig == 2*v, return (1)); fordiv (v, d, if ((d != v) && (sigma(d)>=2*d), return (0));); return (1);}
    a(n) = {my(p = 3^n, k = 1); while (1, if (k % 3 != 0, v = p * k; if (isprab(v), return (v));); k += 2;);}
    \\ Michel Marcus, Mar 07 2013

Extensions

Some terms corrected and a(9)-a(13) from Michel Marcus, Mar 07 2013
a(14)-a(17) from David A. Corneth, Oct 26 2024
Showing 1-10 of 10 results.