cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A112771 Semiprimes of the form 6n + 1.

Original entry on oeis.org

25, 49, 55, 85, 91, 115, 121, 133, 145, 169, 187, 205, 217, 235, 247, 253, 259, 265, 289, 295, 301, 319, 355, 361, 391, 403, 415, 427, 445, 451, 469, 481, 493, 505, 511, 517, 529, 535, 553, 559, 565, 583, 589, 649, 655, 667, 679, 685, 697, 703, 721, 745
Offset: 1

Views

Author

Jonathan Vos Post and Ray Chandler, Oct 15 2005

Keywords

Comments

Union of A108164 and A108166.
Subsequence of A091300. - Zak Seidov, Dec 28 2015

Programs

  • Magma
    IsSemiprime:=func; [s: n in [2..150] | IsSemiprime(s) where s is 6*n + 1]; // Vincenzo Librandi, Sep 22 2012
  • Mathematica
    Select[6 Range[0, 200] + 1, PrimeOmega[#] == 2&] (* Vincenzo Librandi, Sep 22 2012 *)

Formula

a(n) = 6 * A112775(n) +1.

A283597 Numbers n such that both 6n+1 and 6n+7 are semiprimes.

Original entry on oeis.org

8, 14, 19, 41, 42, 43, 48, 49, 59, 74, 84, 85, 88, 92, 93, 97, 108, 113, 116, 132, 139, 144, 148, 149, 157, 158, 159, 162, 163, 189, 190, 193, 198, 209, 210, 211, 222, 223, 224, 225, 226, 227, 231, 234, 235, 250, 251, 259, 264, 272, 280, 285, 306, 307, 315, 316, 317, 318, 319, 320, 323, 326, 327, 340, 345, 349, 358, 361, 368, 376, 386, 387, 388
Offset: 1

Views

Author

Zak Seidov, Mar 14 2017

Keywords

Comments

Both n and n+1 are terms in A112775.

Crossrefs

Cf. A112771 (6n+1 semiprimes), A112775 (6n+1 is semiprime), A001358 (semiprimes).

Programs

  • Maple
    filter:= n -> numtheory:-bigomega(6*n+1) = 2 and numtheory:-bigomega(6*n+7) = 2:
    select(filter, [$1..1000]); # Robert Israel, Dec 23 2024
  • Mathematica
    po[x_]=PrimeOmega[x]; Select[Range[500], po[6# + 1] == po[6# + 7] == 2 &]
  • PARI
    for(n=1, 388, if(bigomega(6*n + 1) == 2 && bigomega(6*n + 7) == 2, print1(n,", "))) \\ Indranil Ghosh, Mar 15 2017

A283598 Numbers k such that all three of 6*k+1, 6*(k+1)+1, and 6*(k+2)+1 are semiprimes.

Original entry on oeis.org

41, 42, 48, 84, 92, 148, 157, 158, 162, 189, 209, 210, 222, 223, 224, 225, 226, 234, 250, 306, 315, 316, 317, 318, 319, 326, 386, 387, 401, 407, 408, 433, 462, 487, 488, 489, 514, 515, 521, 532, 539, 566, 567, 568, 569, 580, 598, 633, 634, 662, 663, 664, 672, 697, 713, 717, 718
Offset: 1

Views

Author

Zak Seidov, Mar 14 2017

Keywords

Comments

That is, k, k+1 and k+2 are terms in A112775.

Crossrefs

Subsequence of A283597 and A112775.

Programs

  • Mathematica
    po[x_]=PrimeOmega[x];Select[Range[1000],po[6*#+1]==po[6*(1+#)+1]==po[6*(2+#)+1]==2 &]
    Select[Range[800],PrimeOmega[6#+{1,7,13}]=={2,2,2}&] (* Harvey P. Dale, Apr 23 2024 *)
Showing 1-3 of 3 results.